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Introduction 
 
Early detection of masses within the breast that may transform into malignancies is known to be 
essential for positive treatment and outcome.  Currently, mammography is the clinical standard 
for screening and provides useful but at times ambiguous information, which can necessitate 
further invasive workup of benign lesions.  Recent research has indicated that a family of 
methods developed in the field of elastography holds promise as an alternative means of 
interrogating soft tissue structures by providing a spatial mapping of material properties (e.g. 
elasticity) that can be inspected for the detection of lesions [1, 2]. A technique known as 
‘modality-independent elastography’ (MIE) [3-5] has been introduced with the intent of 
combining the intuitive discrimination from manual detection with the superior depth of 
penetration and anatomical detail typically given by imaging.  The basic requirements for the 
method are two images of the tissue in different states of deformation (e.g. compression). 
Elasticity parameters are then reconstructed within the context of an inverse problem that utilizes 
non-rigid image registration constrained by a biomechanical model in order to best describe the 
composition of the tissue.  The final result is a map of the breast (or other tissue of interest) that 
reflects material inhomogeneity, such as in the case of a tumor mass that disrupts the surrounding 
structure of normal tissue.  Because MIE works on probing the differences between images, it 
can be used to not only work in concert with more traditional screening techniques but also 
address a possible gap when those methods are unable to directly discern tissues of interest. 
 
 
Body 
 
As stated in the original proposal, there are three main aims of this project: (1) to expand and 
refine the current MIE technique to enhance its efficiency and capabilities, (2) to perform 
analyses on texture in input images and quantify statistical parameters capable of estimating and 
evaluating the success of elastographic reconstruction, and (3) to engineer a device that is 
compatible with current medical imaging systems and can produce compressive forces 
appropriate for phantom and/or clinical setups.  The relevant proposed and completed work is 
listed below and organized as closely as possible to the two major arcs of the Statement of Work. 
 
Task 1(a) stated: “Incorporation of additional biomechanical models (e.g. 3D and 2D/3D 
deformation effects).”  
 
Initial work with MIE involved reconstructions of circular stiff inclusions embedded within thin 
rectangular membranes of polyurethane rubber. The materials used have essentially 
indistinguishable colors but vary significantly in their elastic modulus values (a contrast ratio of 
approximately 5.7:1 as confirmed by material testing by an Enduratec ELF 3200). A black 
permanent marker was used to place a pattern of regularly spaced (~1 cm) grid lines across the 
membrane, which was then securely clamped along two opposite edges and subjected to a 
uniaxial tensile displacement (~8% strain) by means of a milling vise. A commercial webcam 
was rigidly mounted above the membrane to acquire image pairs of the pre- and post-
deformation states. The intent of these experiments was to have a means of performing relatively 
quick 2D analyses and possibly develop an application for dermoscopic evaluation of skin 
lesions.  The model utilized the plane stress approximation [6], which is actually a reduction of 
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the 3D formulation of Cauchy’s Law. However, because the skin has multiple layers in which a 
potential lesion might be present, it was uncertain whether the use of planarity was suitable for 
elastographic work.  In particular, the subcutaneous layer of adipose tissue that serves to 
essentially lubricate the epidermis and dermis may have a non-trivial thickness such that in-plane 
loading is no longer confined to a sufficiently thin slab.  Therefore, a 2D/3D comparison was 
performed to examine the effects of model assumptions on deformations used in the 
reconstruction process.  Two physical characteristics of the domain were examined: the depth of 
penetration of the stiff lesion (simulating a melanoma) and the thickness of the subcutaneous 
layer.  Full 3D deformations were solved over a finite element mesh, projected to the surface, 
and aligned to the dermoscopic image before proceeding to the elastographic reconstruction. 
Figures 1 and 2 show the coupling of the 3D model with 2D reconstruction.  The analysis of the 
recovered elasticity distributions indicated that deeper lesions were more accurately 
characterized, and the thickness of the subcutaneous layer had no significant impact on the 
reconstruction. Further details of this work can be found in Appendix D. 
 
 
 

 
 
Figure 1. MIE 2D/3D experiment setup. (a) finite element mesh (b) overlay of displacements induced by 
hypothetical dermoscopic probe (c) diagram of skin composition in mesh (gray=lesion) from side view.  
 

 2



 
Figure 2.  MIE 2D/3D images. (a) source image obtained from a digital photograph of a melanoma (b) sample 
simulation reconstruction obtained by experiment shown in Figure 1. Black overlays in both frames denotes border 
of lesion. 
 
 
 
Task 1(b) stated: “Design and implementation of computational code routines (e.g. 
modification of finite element model).”  and Task 1(c) stated: “Enhancement of model 
programming structure via numerical analysis and parallelization.”  
 
In order to accommodate the methodology of MIE in creating a Jacobian matrix fully sensitive to 
the discretization of the domain, a large number of solutions involving the finite element model 
and the subsequent imge deformation are required. With the proposed increase in dimensionality 
to handle 3D data, the implementation complexity quickly increases beyond the capabilities of 
the original MATLAB/FORTRAN/LAPACK design. Therefore, the Portable Extensible Toolkit 
for Scientific Computation (PETSc) toolkit [7,8] was selected to provide the necessary 
framework for developing sparse matrix system solvers and split the Jacobian formation process. 
A separate C/C++ routine has also been written to perform a Gauss-Newton optimization and 
interface with PETSc solver structures. This framework is flexible enough to accommodate the 
use of 2D models such that unified data structures and formats are now employed, and multi-
resolution capabilities present in the previous 2D-only codebase are now available in 3D.  

It was previously reported that by using a share of 100 CPUs from the Vanderbilt 
University Advanced Computing Center for Research and Education cluster, speedups in the 
overall computation of over two orders of magnitude were achieved.  This actually indicated a 
superlinear path over predictions from Ahmdal’s Law [9]; however, recent observations indicate 
that although significant gains are regularly made in employing parallel code, heterogeneity of 
machine power and network latencies may actually hinder efficiency.  This is hypothesized to be 
a consequence of the current design of the internal messaging system and may be resolved by 
adjusting the current master-slave relationship to utilize a dynamic SPMD (single program, 
multiple data) flow concept wherein the master attempts to concurrently designate a task to the 
next available processor while accepting the latest completed job. An in-house cluster of 18 
processors (2.0 Ghz Pentium 4 Xeon) is now available for performing additional reconstructions 
and further benchmarking to investigate this enhancement.  
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Task 1(d) stated: “Design of texture analysis parameter for predicting elastographic 
reconstruction effectiveness.”  
 
Earlier work had examined the effects in 2D of noise in both the image and boundary condition 
selection.  The primary conclusions of that work were that degradation in the image of up to 10% 
randomized noise was within the expected behavior of most acquisition systems, and that 
boundary mismappings of less than 0.5 pixel units was generally tolerated by the reconstruction 
algorithm.  For further detail, please see the full text of this work as listed in Appendix B.  

With the recent move to 3D reconstruction work, it has become of increasing concern to 
analyze the effects of boundary condition estimation.  Because similarity metrics (e.g. correlation 
coefficients) typically normalize and/or blur the intensity distribution [10], image noise can be 
tolerated fairly well.  However, any inaccuracy in the boundary condition set propagates through 
the model and into image deformation, thereby having a significant impact on the evaluation of 
the objective function and the success of the reconstruction.  The current method of selecting 
displacement (Type 1) boundary conditions requires manual interaction to guide or correct point 
correspondence for every surface node. Assuming that an input device (e.g. a mouse) is needed 
to identify the specific coordinates, this introduces an operator-dependent noise process in 
localizing any given point.  A gold standard boundary condition set was derived by simulating 
compression of the breast with a device described below in the work related to Task 2.  
Reconstructions were performed using randomized vectors to disrupt the target surface; the 
results of this experiment indicate that improper localization of boundary points greater than or 
equal to 0.5 units of voxel spacing can introduce significant error to the reconstruction process 
and impair its ability to characterize the underlying elasticity distribution. This is a similar result 
to that found from the prior work done in 2D [Appendix B]. It also confirms that randomizing 
the vectors is a significant challenge to the algorithm because of the introduction of highly non-
physical deformations that cause backlash in the finite element mesh and other numerical 
anomalies. 

The increase in dimensionality from 2D to 3D necessitates much higher discretization 
levels in meshing and pre-processing work.  To effectively cover the surface of a CT volume 
requires over 6,000 nodes, which would result in an unreasonable task for manual boundary 
condition selection. Therefore, an automated method for determining surface correspondence and 
then interpolating those results into displacements for boundary condition sets is needed.  Three 
methods of surface registration and point correspondence were considered; two are derived from 
surface matching of potential energy distributions based on the diffusion and Laplace equations, 
and the other is a free-form warping via a thin-plate spline.  For complete details on the methods 
and buildup from previous work, please see documents provided in Appendix  D and Appendix 
F. ompared to the gold standard boundary condition set, the target registration error was greatest 
for the diffusion method and least (best) for the thin-plate spline.  Energy matching from the 
solutions of the diffusion and Laplace equations yielded boundary condition sets that were 
inadequate for reconstructing a proper elasticity contrast.  This can be partly explained because 
the mean errors of those surface registration techniques (as compared to the gold standard and in 
an equivalent sense to the tested noise levels) are approximately 3.3 and 1.7 voxel units, 
respectively, and are far too large for the algorithm to handle. The diffusion-based boundary 
conditions also proved more difficult to obtain a stable solution for in the model, which further 
contributed to the mismatch in reconstructed elasticity contrast. However, the results obtained 
using the thin-plate spline method are encouraging because the mean error was 0.43 voxel units, 

 4



thereby satisfying the threshold (<0.5 voxel units) while demonstrating reconstruction success.  
The reconstruction behavior in that case was consistent with the predicted objective function 
space and the optimal elasticity contrast was found to be within 6% of the true value. This 
preliminary result appears to identify the use of thin-plate spline interpolation as a strong 
candidate for generating boundary conditions for MIE. The implementation for that method 
required the use of 40 control points, which is seen as a reasonable choice in placing fiducials for 
data acquisition in order to capture the extent of anticipated deformation processes. A more 
detailed explanation of this work and summary of experimental results is provided in the 
accompanying document found in Appendix E.  
 
 
Task 2(a) stated: “Design and construction of breast phantoms with simulated tumors.”  
 
We have opted to work with polyvinyl alcohol cryogel (PVA-C) because of its relative ease and 
safety in manufacture and handling. The polymer has previously been described as being a 
desirable material for the fabrication of both ultrasound and MR elastography phantoms for use 
in representing the brain, blood vessels, and breast [11-13].  To create a breast-shaped fascimile, 
approximately 650 cc of 8% wt/vol polymer solution is molded in a plastic container for 1 or 2 
freeze-thaw-cycles. The result is a dome shape approximately 10-11 cm at the base and tapering 
over a depth of about 5-6 cm. 

Because of its use of intensity-based image similarity metrics, the MIE methodology 
requires image texture in the variation of intensity values within the domain to perform a 
registration assessment based on similarity.  While the natural structures of the breast present 
little concern in resulting in a homogeneous distribution, introducing usable patterns into a 
phantom poses some technical challenges in order to not have intensity correlate too strongly 
with structural differences and to avoid altering the elastic properties by creating a heterogeneous 
composite material. A method that has been found to be potentially satisfactory for MIE involves 
doping a separate quantity of polymer solution with an imaging contrast agent. Before the 
phantom fully polymerizes through freezing, a hypodermic needle is used to create multiple 
tracts of the contrast-enhanced slurry, thereby creating regions of different intensity while 
maintaining a nearly homogeneous bulk material. Figure 14 below shows a few slices of a PVA-
C phantom constructed in this manner using iohexol suspension (Omnipaque®, GE Healthcare, 
Chalfont St. Giles, UK) and scanned by a clinical CT unit.  

 
 

 
 
Figure 3.  Selected views of a PVA-C breast phantom using iodine injections and imaged by CT. 
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Experimentation has also led to a protocol that should allow for the creation and 

implantation of a simulated tumor in the phantom.  Prior to manufacture of the main breast 
phantom, a spherical inclusion can be made (out of a significantly stiffer piece of PVA-C) about 
2.5-cm in diameter by using at least two freeze-thaw-cycles on the liquid polymer. This inclusion 
can then be suspended within the main breast mold to let the bulk material solidify around it. 
 
 
Task 2(b) stated: “Prototype construction of compression device including design 
modifications to optimize compatibility with current imaging modalities.” and Task 2(c) 
stated: “Conduct breast phantom experiments to investigate efficacy of MIE reconstruction 
while varying parameters (e.g. degree of compression) during imaging.”  
 
Two sets of compression devices have been constructed and and found to be compatible in 
magnetic resonance (MR) and X-ray computed tomography (CT) imaging systems.  Both 
devices are primarily composed of a clear acrylic material and make use of neoprene air bladders 
to deliver a compression of up to 5 cm. The first device is a rectangular Plexiglas frame that traps 
the phantom in at least two directions with a sliding wall and fixed wall which houses the air 
bladder.  This unit has been used on PVA-C phantoms fabricated as described above.  Figure 4 
below illustrates the use of the device (in this case, in CT); the specifics of the experiment are 
described in Appendix F. 

A prototype compression chamber that is more clinically oriented has been designed to fit 
into the chassis of a Philips Intera breast coil unit.  In order to retain the geometry of the overall 
device, which is made to accommodate 95% of the population for imaging purposes according to 
the manufacturer, the chamber was fabricated from by cutting cylindrical segments at ~27o.  The 
air bladders are attached using polycarbonate pins to face the cranial and caudal (supra- and 
infra-mammary aspects, respectively) surfaces of the breast.  The overall assembly is then 
covered with an expandable nylon sheet (see Figure 5).  

Image acquisition studies in conjunction with the Vanderbilt University Institute of 
Imaging Science have recently begun to demonstrate the clinical feasibility of the design. 
A Philips Achieva 3T equipped with field strengths up to 80 mT/m, and slew-rates up to 
200T/m/s and an eight channel SENSE breast coil has been used for all breast imaging.  The 
target and deformed images were acquired with a 3D T1-weighted high resolution isotropic 
volume exam (THRIVE) that includes a fat-nulling inversion pulse.  Pulse sequence parameters 
were TR/TE=6.19ms/3.2ms with a flip angle of 10o and a NEX=1.  129 2-mm thick slices were 
acquired with an acquisition matrix was 400x400 zero reconstructed to 512x512 over a field of 
view of 20 cm2 to 25.6 cm2 (depending on breast size).  This sequence design is currently being 
utilized for initial MIE analysis and will be altered accordingly if necessary. Figure 6 below 
shows a sample image slice of a patient breast with a tumor obtained from the MIE clinical 
compression chamber. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 4.  Experimental system for image data acquisition on phantoms.  A polyvinyl alcohol cryogel is placed 
within a Plexiglas chamber with its surfaces held in place against the walls. (a)-(c) volumetric segmentations of the 
CT image volume taken of the phantom at 0%, 50%, and 100% inflation of the air bladder. (d) photograph of the 
setup. Compression is delivered through an air bladder (right wall in picture) inflated manually through a bulb 
adapted from a standard sphygmomanometer. [from Appendix F] 
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Figure 5.  Left: Photograph of assembly looking down into the Philips Intera breast coil unit. Right: front view of 
the device, which is clamped to the chassis but does not interfere with the imaging field of view. 
 

 
 

  
 

Figure 6. Example slices of an MR image obtained of a breast (a) before and (b) after compression as delivered by 
the clinical MIE chamber. 
 
 
 
 
Key Research Accomplishments 
 
Although the basic requirements of a static compression and pre-/post- image analysis that are 
the foundation of MIE are simple conceptually compared with other elastography methods, the 
implementation of a robust system is a significant engineering challenge. The flexibility of the 
parallelized code base is for this project has provided an interesting avenue of analysis of a large-
scale nonlinear optimization problem.  In addition, the relatively easy translation of data 
acquisition system designs to the clinic is a key breakthrough for the project to demonstrate the 
safety and applicability of the method in a real-world setting, whether on phantom or human 
subjects. 
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Reportable Outcomes 
 
Work on the MIE method has so far resulted in multiple conference papers. Prior work that was 
completed in the reporting timeline resulted in a peer-reviewed journal publication. These items 
have provided the foundation for a thesis proposal approved by the graduate school, as well as a 
forthcoming manuscript currently being prepared.  
 
Poster presentations 
 
Vanderbilt University Medical Scientist Training Program retreat (July 2006). Brentwood, TN. 
 
Conference papers 
 
Ou JJ, Barnes SL, and Miga MI, "Application of multi-resolution modality independent 
elastography for detection of multiple anomalous objects," in Medical Imaging 2006: 
Physiology, Function and Structure from Medical Images, San Diego, CA, Feb 2006, pp. 
614310-1 to 614310-9. 
 
Ou JJ, Barnes SL, Miga MI, "Preliminary testing of sensitivity to input data quality in an 
elastographic reconstruction method," in IEEE International Symposium on Biomedical Imaging, 
Arlington, VA, Apr 2006, pp. 948-951. 
 
Schuler DR, Ou JJ, Barnes SL, Miga MI, “Automatic surface correspondence methods for a 
deformed breast,” in Medical Imaging 2006: Visualization and Image-Guided Procedures, San 
Diego, CA, Feb 2006, pp. 614125-1 to 614125-8. 
 
Ou JJ, Ong RE, Miga MI, “An Evaluation of 3D Modality Independent Elastography 
Robustness to Boundary Condition Noise”, SPIE Medical Imaging 2007. Accepted Oct 2006, In 
press. 
 
Ong RE, Ou JJ, Miga MI, “Using Laplace’s equation for non-rigid registration of breast 
surfaces”, SPIE Medical Imaging 2007. Accepted Oct 2006, In press. 
 
Miga MI, Ou JJ, Ellis DL, “An elastography framework for use in dermoscopy”, SPIE Medical 
Imaging 2007. Accepted Oct 2006, In press.  
 
 
 
Conclusions 
 
The current results and progress denoted in this report are within the proposed statement of work 
and are encouraging towards completion of the overall objectives with further effort. No 
significant deviations are reported at this time.  
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ABSTRACT 
 
This work extends a recently realized inverse problem technique of extracting soft tissue elasticity information via non-
rigid model-based image registration. The algorithm uses the elastic properties of the tissue in a biomechanical model to 
achieve maximal similarity between image data acquired under different states of loading. A new multi-resolution, non-
linear optimization framework has been employed which allows for improved performance and object detection. Prior 
studies have demonstrated successful reconstructions from images of a tissue-like thin membrane phantom with a single 
embedded inclusion that was significantly stiffer than its surroundings. For this investigation, a similar phantom was 
fabricated with two stiff inclusions to test the effectiveness of this method in discriminating multiple smaller objects.  
Elasticity values generated from both simulation and real data testing scenarios provided sufficient contrast for detection 
and good quantitative localization of the inclusion areas.   
 
Keywords:  Elastography, elasticity imaging, multi-resolution methods, image similarity, finite elements 
 

1.  INTRODUCTION 
 
The practice of palpating soft tissue structures in the course of the clinical physical exam has had a long-standing 
history of providing correlation of improper stiffness with pathology.  The ability to characterize the mechanical 
properties of tissue is a potential source of additional information relevant for detection and diagnosis of a disease 
process, and has implications for the assessment of treatment.  One way in which this could be achieved in a minimally 
invasive manner is by analyzing tissue deformation through imaging and/or image processing techniques, which is a 
central goal of the field of elastography [1].  Application of such methods to the interrogation of the breast [2,3], skin 
[4-6], prostate [7], and other accessible organ systems is an emerging area of research.   

Many of the current elastography methods are founded in ultrasound (US) and magnetic resonance imaging 
(MR) and involve the estimation of induced displacements within the tissue of interest to infer the elasticity distribution.  
We have pursued the development of a reconstruction method utilizing quasi-static deformation and image similarity 
metrics that has been termed 'modality-independent elastography’ (MIE) [8-10] because of its potential to handle native 
anatomical image data from different modalities with simple modification to the acquisition procedure.  Common 
problems facing all of these methods involve limitations with the accurate recovery of elastic property values, detection 
of small lesions in tissue, and the resolution of multiple discrete lesions [11,12].  Building upon recent study involving a 
single focal lesion [6], the objectives of this work were to challenge the ability of the MIE method to reconstruct a 
scenario of two small inclusions embedded in a homogeneous domain and to further explore the feasibility of the 
method in handling image data from different imaging modalities.  This was accomplished by performing simulated 
reconstructions using images obtained from X-ray computed tomography (CT), MR, and digital photography and then a 
reconstruction from a real-world experiment using a thin phantom membrane. 

 
2.  METHODS 

 
2.1  Elastographic reconstruction framework 
 
The conceptual framework for our elastographic reconstruction has been previously described in [6,8-10]. In brief, an 
image of a tissue of interest (source) is deformed by a biomechanical computer model and compared against an 
acquired image of the same tissue in a mechanically loaded state (target). The deformation and comparison is repeated 
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using systemic updates of elasticity parameters until a suitable match in intramodal image similarity is achieved in a 
least squares manner to satisfy a multi-resolution, non-linear optimization scheme. This process can be classified as an 
inverse problem, with model-based deformation of the source image representing the forward problem. Each of the 
three major components (model, image comparison, and optimization) is described in more detail in the following 
sections, and a flow chart representation of the overall process is included in Figure 1. 
 
2.1.1  Biomechanical model 
 
A central component to the model-based inverse problem is the manner in which the continuum is represented. While 
the constitutive model that best describes tissue deformation mechanics is more complex, for this work, linear isotropic 
elasticity has been employed. The partial differential equation that expresses a state of mechanical equilibrium can be 
written as [13]:  

0=•∇ σ  (1) 
 
where σ is the Cartesian stress tensor.  

For the purposes of the following experimentation, we also apply either the plane stress or plane strain 
approximations to the thin membrane and breast cross-section trials, respectively.  The direct consequence of this is a 
reduction of the 36 stiffness constraints in the general 3D formulation of Cauchy’s Law to the two parameters of 
Young’s modulus (E) and Poisson’s ratio (ν) in 2D.  These simplifications, while significant, are appropriate 
descriptions of sufficiently thin and thick systems under planar loading.   In plane stress, 
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describes the constitutive relationship between the Cartesian stress tensor [σx, σy, τxy] and strain tensor [εx, εy, γxy].  
Similarly, in plane strain, 
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A finite element (FE) model using triangular elements is constructed from the source image and assigned appropriate 
boundary conditions based on estimated displacement or stress (i.e. Dirichlet and Neumann conditions, respectively).  
The standard Galerkin method of weighted residuals [14] is used to construct and solve the system. 
 
2.1.2  Image deformation and comparison 
 
To further describe the reconstruction process, we introduce some additional terminology at this point.  The model 
domain is equivalent to the total area of the FE mesh constructed using the source image as stated above and contains 
the relevant elasticity information.  The model domain is partitioned by a K-means clustering of the element centroids 
(MATLAB R14, Mathworks, Natick, MA) into N number of regions, each of which has a distinct set of spatially 
homogeneous elastic properties.  Subdividing in this manner allows for the implementation of the multi-resolution 
reconstruction whereby progressively finer spatial distributions of elasticity parameters are utilized in the process, a 
method that improves upon previous versions using only a single resolution [8-10].  Analogously, the comparison 
domain is an area specified by semi-automated segmentation on the target image and contains information pertaining to 
image similarity.  The comparison domain is separated into M number of rectangular zones containing approximately 
equal numbers of pixels. 
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The reconstruction algorithm begins by assigning an initial Young’s modulus value to each of the regions at 
the coarsest resolution. Poisson’s ratio is held constant at ν = 0.485 to represent a nearly incompressible material.  The 
FE model is solved to determine the nodal mesh displacements, which are in turn used to deform the source image. This 
model-deformed image is then compared to the target image for every zone using an intensity-based image similarity 
metric.  While a number of methods are available for such a task, here, we utilize the correlation coefficient (CC) [15] 
throughout, as it has empirically demonstrated superior performance over other metrics such as the sum of squared 
differences and normalized mutual information. 
 
2.1.3  Optimization scheme 
 
Let T be a function that represents the model-based image deformation and takes as its input a vector of elastic modulus 
values E of length N that corresponds to the current distribution of regions in the model domain. Then for two 
distributions of modulus values E1 and E2, the similarity between the images produced by T(E1) and T(E2) is the vector 
S of length M containing evaluations of the correlation coefficient corresponding to the distribution of zones in the 
comparison domain. The elasticity parameter optimization can be written as the minimization of the least squares error 
objective function 

2
ESTTRUE SS −=Ψ  (4) 

 
where STRUE is the set of similarity values achieved when comparing the target image to itself, SEST is the similarity 
between the model-deformed source and the target images using current estimates of the elastic modulus distribution, 
and |•| denotes the vector L2 norm. By definition, STRUE is the maximum value for the similarity metric (max CC = 1). 
Using a Levenberg-Marquardt approach, the residual form of equation (4) becomes 
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where J = ∂SEST/∂E is the Jacobian matrix of size M x N and I is the N x N identity matrix. Because JTJ is typically an 
ill-conditioned term, the regularization parameter α is determined using the methods described in [16].  Modulus values 
of the regions at a given resolution are updated by ∆E until an error tolerance is reached or a maximum number of 
iterations have been completed. Upon reaching a stopping criterion, the material property description is interpolated 
onto the next (i.e. finer) resolution and the above steps are repeated. Spatial averaging of modulus values within the 
model domain and solution relaxation between successive resolution levels are also utilized to improve the stability of 
the optimization. 
 

 
 
Figure 1.  Flow chart of elastographic reconstruction framework. 
 
2.2 Reconstruction experiments 
 
A two-material phantom membrane of simulated skin had been previously constructed [6] using Smooth-On™ 
polyurethanes (Smooth-On, Easton, PA) designated by the manufacturer as Evergreen 10 and Evergreen 50. These 
materials have essentially indistinguishable colors but vary significantly in their elastic modulus values, so the former 
was used as the bulk material and the latter for stiff objects. From material testing, the elastic modulus contrast was 
expected to be approximately 5.7:1.  The phantom was made to contain two circular stiff inclusions 1.5 cm in diameter 
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embedded near opposing corners of a rectangular field of bulk material measuring 15 cm x 14 cm. A black permanent 
marker was used to place a pattern of regularly spaced (~1 cm) grid lines across the membrane. The thin membrane was 
securely clamped along two opposite edges and then subjected to a uniaxial tensile displacement (~8% strain) by means 
of a milling vise. A commercial webcam (Logitech QuickCam Pro 4000, 960 x 1280 pixel resolution) was rigidly 
mounted above the membrane to acquire image pairs of the pre- and post-stretched states. 
 To initially test the method regarding the two-inclusion scenario, a simulation using the source image of the 
membrane was performed by deforming it with a prescribed model (plane stress) of known boundary displacements and 
elasticity parameters to generate a target image; high modulus values were assigned to elements bounded by a 
segmentation of the inclusion locations. A reconstruction was then performed using the actual image data acquired as 
described above. In both cases, resolutions of N = 16, 64, 256, 512, and 800 regions and M = 400 zones were used.  The 
results of the idealized and real data reconstructions are shown in Figures 4 and 5, with further quantitative evaluation in 
Table 1.   
 In order to examine the robustness of the method regarding its use of data from differing sources, simulation 
reconstructions were performed using image slices extracted from breast image volumes obtained from CT and MR 
scans (see Figure 3).  Although these were taken from two different patients, the images were selected to be 
approximately corresponding slices ~2 cm away from the chest wall in the coronal orientation of the standard 
anatomical position.  The simulations were set up in the same manner as for the digital photographs, using either one or 
two inclusions of about 1 cm in diameter embedded within the true elasticity distribution and a small compression (~8% 
strain) in the cranial-caudal direction.  The relative stiffness of the inclusions was designated to be 5.7:1 for consistency 
with the material testing data and also because the value is fairly representative of breast tumor properties [17].  The 
plane strain model approximation was used in the breast simulation trials, progressing through resolutions of N = 24, 64, 
256, and 576 regions using M = 200 zones. The reconstruction method was then run for all four test cases, and the 
results are presented in Figures 6 and 7 and Table 2. 
 

 
 
Figure 2.  (Left to right): Phantom membrane in undeformed state (source image), under deformation (target image), and difference 
image.  Arrows in the left panel indicate the positions of the two stiff inclusions. 
 
 
2.3  Reconstruction evaluation 
 
The fidelity of the elasticity reconstruction was evaluated on its ability to detect the presence of an inclusion based on 
classification of the material property distribution, and the retrospective accuracy of localizing the lesions.  The elastic 
properties as a whole were treated as a Gaussian mixture of two classes and separated by a threshold established via the 
method described in [18].  The likelihood of detecting a lesion in the elasticity image was found using the contrast-to-
noise ratio as defined by [12,19]: 
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Figure 3.  Images slices of breast tissue extracted from a CT volume (left) and MR volume (right) used in simulation study of the 
ability of the reconstruction method to utilize disparate image data types.  
 
 
 
where µ and σ 2 are the sample mean and variance of a material property distribution and the subscripts L and B denote 
the lesion and bulk material classes, respectively.  As a quantitative assessment of the localization of the lesion(s), the 
positive predictive value of correctly identifying a lesion material within the known segmented region of the inclusions 
was used as a 'quality of reconstruction score' (QRS).  This value is significant because identification of the lesion 
border and material classification are done independently, so any user knowledge of the test scenario does not influence 
the performance of the measure.  Cutoffs for successful detection and localization were set at CNR≥2.2 as noted by [12] 
and QRS≥80% as determined by prior study in our laboratory.  The average modulus contrast is found from the ratio of 
the means of the two material classes, and a peak modulus contrast value is also reported by taking the ratio of two 
manually selected homogeneous regions of approximately equal area known to be representative of the two materials.  
It should be noted that in other work not presented here, the definition of QRS included a weighting factor provided by 
the estimated reconstruction modulus contrast, but for the current purposes, only localization accuracy was considered 
to maintain an objective evaluation of inclusion detection. 
 
 

3.  RESULTS 
 
Figure 4 demonstrates the ability of the reconstruction method to produce an elasticity map from the simulation data 
with good localization of the inclusions that are easily visually distinguishable from the surrounding bulk material. The 
progression through resolutions of N = 64, 256, 512, and 800 regions shows improving delineation of the inclusions and 
elastic contrast.  Figure 5 demonstrates a similar behavior for the reconstruction of the acquired phantom membrane 
data, with both spatial definition and modulus contrast increasing with the finer discretization.  Table 1 summarizes the 
quantitative evaluation of the reconstructions in both simulation and phantom trials, including CNR, contrast ratio, and 
QRS values.  The CNR values are sufficient to allow for discrimination of the two materials and the identification of the 
inclusions was determined to be accurate in both cases.  The reconstruction of the phantom membrane does show some 
misclassification along the border where the deformation was applied as well as in the corner adjacent to one of the 
inclusions (see Figure 5d). 

Figures 6 and 7 show the final reconstruction results for the CT and MR breast slice simulations using either 
one or two inclusions.  In both test scenarios, the resolvability of the stiffer material was found to be adequate according 
to the CNR threshold, but definitely higher in the MR-derived elasticity images.  Localization of the inclusions yielded 
excellent QRS values in reconstructions using either modality, again higher (though slightly) for the MR images. 
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Figure 4.  Reconstruction of the simulated membrane deformation using idealized model parameters, progressing through finer 
resolution distributions (a)-(d) of 64, 256, 512, and 800 regions. 
 
 

 
 
Figure 5.  Reconstruction of the actual membrane data. A faint contour in (d) is present to demarcate the actual position of the stiff 
inclusions.  Again, panels (a)-(d) demonstrate the effect of the multi-resolution method in utilizing 64, 256, 512, and 800 regions to 
better capture the shape and location of the inclusions. 
 

 
 

Table 1.  Quantitative reconstruction evaluations. 
 Avg CR Max CR CNR QRS (%) 
Simulation 2.7 4.0 4.4 97.7 
Phantom 2.6 4.1 2.8 88.5 
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Figure 6.  Reconstructions of simulation trials for the CT breast slice using a single inclusion (left) and two inclusions (right). The 
true inclusion boundaries are overlaid in each elasticity image. 
 

 
Figure 7.  Reconstructions (bottom row) of simulation trials for the MR breast slice using a single inclusion (left) and two inclusions 
(right).  The true elasticity distributions are also shown (top row) for comparison. 
 
 

Table 2.  Quantitative reconstruction evaluations. 
 Avg CR Max CR CNR QRS (%) 
CT (1 inclusion) 2.1 3.1 3.0 97.6 
CT (2 inclusions) 2.0 2.6 3.5 96.9 
MR (1 inclusion) 2.8 3.7 20.0 100 
MR (2 inclusions) 2.7 3.7 5.7 99.8 
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4.  DISCUSSION 
 
The results of the phantom membrane experiment are encouraging because of their similarity to the idealized 
simulation. Despite nonlinear model-data mismatch, out-of-plane distortions during stretching, and possible boundary 
condition inaccuracies, the elasticity reconstruction demonstrated good localization of the two small inclusions.  The 
majority of the problems in reconstruction are mostly likely due to noise incurred in the mapping of the boundary 
displacements. It should be noted that the phantom reconstruction was achieved with a non-pigmented lesion (see 
Figure 2, arrows), indicating that deflections of the image structure are capable of driving the image similarity metric of 
the reconstruction process.  This does intuitively suggest that some metric for rating the complexity and density of 
image pattern in relation to algorithm success may be important and is currently under investigation.  Preliminary data 
not presented in this work indicates that such a threshold does exist for image data that can be properly analyzed by the 
current framework.  The modality independence of the method is also supported by the results here; clearly, the 
Hounsfield units of CT, floating point values from an MR volume, and the luminance captured by the CCD sensor of a 
digital camera are quite different types of data to handle because they are based on different physical principles.  The 
simulation reconstructions demonstrate that the method is indifferent to these differences by treating the data as an 
arbitrary range of intensities and will converge towards the true elasticity distribution based on the image pattern 
available.  This is a possible explanation for the qualitatively more satisfactory results from the MR simulations 
compared to the CT trials because the distribution of intensities from the former modality yielded a more diversified 
histogram, an attribute that should naturally aid an intensity-based metric. 

While an ideal reconstruction would also be accurate in characterizing a lesion by its modulus contrast, our 
focus in the study was to test the ability of the method to detect and localize the inclusions.  In previous experimentation 
with reconstructions of single focal lesions, we have been generally successful in achieving a contrast ratio within 25% 
of the true/expected value. It is somewhat troubling that the contrast ratios calculated here did not meet that criterion, 
although the experiments with the phantom membrane came fairly close (28%).  However, these results underscore the 
difficulty of the scenarios in not only having to deal with multiple inclusions but quite small ones in both the true 
physical sense and also the scale of the domain.  Any of the given inclusions tested in simulation and with the real data 
were detected within a homogeneous domain approximately an order of magnitude larger (e.g., 1.5-cm lesions in a 15 
cm x 14 cm domain for the phantom).  The expectation of being able to identify with any confidence the presence of the 
inclusion is comparable to the observations made in [12] where the test of finding a single 5-mm lesion within a 4 cm x 
5 cm domain proved to be the most problematic.  Therefore, the localization of the lesions as determined by the CNR 
and QRS metrics is deemed to be a success, and further investigation into the nature of the method with respect to the 
scale of the lesion and domain is warranted. 

   
5.  CONCLUSIONS 

 
In this work, we have presented further testing of a method for recovering elasticity parameters by maximizing the 
similarity between images of a tissue of interest acquired under two different states of quasi-static loading within the 
context of an inverse problem.  The specific experiments presented here examined the effectiveness of the technique for 
the detection of multiple small discrete focal lesions embedded in an otherwise homogeneous medium, as well as 
further proof-of-concept work in its applicability to utilize image data from various modalities.  In both cases, the 
method provided accurate localization of the lesions based on the reconstruction of relevant elasticity contrast.  Because 
the biomechanical model, multi-resolution optimization, and image acquisition are each modular components of the 
framework, this elastographic reconstruction technique is readily extensible for added sophistication, and there is 
ongoing work to enhance the methodology with more complex models and advances in imaging technology. 
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Application of Multi-resolution 
Modality Independent Elastography

for Detection of
Multiple Anomalous Objects
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• (Solid) tumors are usually stiffer than surrounding 
tissue

• Soft tissue interrogation of various organ systems 
(e.g. skin, liver, prostate, breast) for tumor
detection

• Elastography gives representation of a structure 
according to its mechanical properties 

• Deformation processes indicative of material 
inhomogeneity can be captured by imaging and 
approximated with modeling

• Associate form and function through image analysis 
separate from modality acquisition

Modality Independent Elastography
(MIE) Concepts
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MIE Components

• (1) Biomechanical FE model of 
soft-tissue deformation

• Conservation of stresses (continuum)

• Constitutive stress-strain relation (Hooke’s Law)

0=•∇ σ

εσ E=

MIE Components (cont.)

• (2) Similarity measure for 
comparing images 

• Acquired “pre-” (source) & “post-” (target) 
quasi-static deformation

• Intensity-based registration metrics
• MI, NMI, SSD, CC, GC
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MIE Components (cont.)

• (3a) Optimization routine to update 
material properties in the model

• Objective function based on similarity

• Levenberg-Marquardt
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MIE Components (cont.)

• (3b) Discretization of elasticity
distribution and image data

• Multi-resolution K-means clustering of elements 
(“regions”)

• Sampling of image comparison area (“zones”)

regions zones

FE mesh Target
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MIE Framework

NO

Calculate Displacement Field 
Deform Source Image

Image Acquisition Generate FE Model

Compare:  Deformed Source
== 

Target Image

Calculate Elasticity Update

for n=1:N resolutions

Multi-res complete 

AND 

Error tolerance reached

OR Max iterations complete

YES

END

Medical Physics, vol. 32, no. 5, pp. 1308-1320, 2005

inclusion

Prior Work – Single Inclusion
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Source Target

Medical Physics, vol. 32, no. 5, pp. 1308-1320, 2005

multi-res

without 
multi-res

• Modality independence
– Digital photography

– X-ray computed tomography (CT)

– Magnetic resonance (MR)

• Two (small) inclusions
• Simulation and phantom membrane 

study

Study Objectives:
Further Testing of MIE
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• Classify reconstruction 
Two-class Gaussian mixture model

• Detectability via elasticity image contrast

• Localization accuracy
– Positive predictive value of identifying lesion 

material in correct location

Evaluating MIE

Source Target1 Target2

CT breast slice - simulation
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Source Target1 Target2

MR breast slice - simulation

Source Target Diff

Two inclusion membrane
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Summary

• Modality independence via simulation for 
handling various data types

• Multi-resolution approach potentially 
improves optimization convergence

• Two small stiff inclusions reconstructed in 
phantom membrane experiment

• Detectability accomplished via CNR
• Localization successful as evaluated by QRS
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Future Directions / Research Questions

• Biological tissues are not typically linearly 
elastic

• Need for accurate boundary conditions 
creates dependence on segmentation 
methodology

• Not all data sets necessarily contain 
sufficient information for elastographic
reconstruction
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ABSTRACT 

An elastographic reconstruction method has been developed 

to recover the material properties of soft tissue by model-

based analysis of image data acquired at different states of 

mechanical loading. The algorithm utilizes image similarity 

as part of the cost function for a multi-resolution, non-linear 

optimization. Previous work with a phantom membrane 
used for simulated dermoscopic application has prompted 

this preliminary investigation of the relative effects of 

additive image noise and boundary condition determination 

errors on the performance of the method. The results as 

quantified by elasticity contrast and localization accuracy 

indicate that the reconstruction process is robust in the 

presence of realistic levels of image corruption and tolerates 

the majority of boundary condition mapping errors. 

1. INTRODUCTION 

The practice of palpating soft tissue structures in the course 

of the physical exam for assessing tissue health has had a 
long-standing clinical history of providing correlation 

between improper stiffness and pathology. The ability to 

characterize the mechanical properties of tissue is therefore 

a potential source of information relevant for both diagnosis 

and prognosis. One way in which this could be achieved in a 

non-invasive manner is through analysis of tissue 

deformation with imaging and image processing techniques, 

which is a central goal of the field of elastography [1].  

The conceptual framework for our elastographic 

reconstruction has been previously described in [2-4]. In 

brief, images of a tissue of interest are acquired in an initial 
(source) and then mechanically loaded state (target). The 

source image is deformed by a prescribed computational 

model and compared to the target. This is repeated in an 

iterative process using updates to the elasticity parameters of 

the model as generated by a multi-resolution, non-linear 

optimization scheme in order to achieve a suitable match in 

image similarity. Because the goal of the reconstruction is to 

determine a spatial mapping of tissue elasticity, this process 

can also be classified as an inverse problem.   

Our observations during the ongoing development and 

testing of this method have prompted questions concerning 

the quality of data necessary and sufficient to achieve 

satisfactory results (i.e. fidelity of the reconstructed 

elasticity image). The primary inputs to the reconstruction 

method are the acquired images and the delineated boundary 
conditions on the region of interest. While it is clearly 

preferable to have idealized data, in reality, both inputs 

involve varying levels of manual interaction. As an initial 

study, we have sought to test the effects of degradation in 

data quality on the end reconstruction by using additive 

image noise and randomized boundary condition selection 

error. 

2. METHODS 

2.1. Elastographic Reconstruction Framework 

There are three major components in the reconstruction 

framework: a biomechanical model of tissue response to 

applied deformation, a method of image comparison, and an 

optimization scheme. For the current version, a continuum-

based model of mechanical equilibrium using isotropic 

Hookean linear elasticity with a plane stress approximation 

is employed [5]. This allows for a reduction of the general 

3D formulation of Cauchy’s Law to the two parameters of 

Young’s modulus and Poisson’s ratio in 2D. The 

displacement solution of the finite element representation of 

the model, solved using the standard Galerkin method of 
weighted residuals [6], is then applied to the nodes of a 

simple triangular mesh based on the source image domain in 

order to perform image deformation. The mesh is 

partitioned by K-means clustering (MATLAB R14, 

Mathworks, Nattuck, MA) into N number of regions, each 

of which describes a distinct set of homogeneous elastic 

properties for a grouping of adjacent elements. This allows 

for implementation of the multi-resolution approach by 

creating a hierarchy of increasingly finer spatial 

distributions of elasticity parameters, which has been shown 

to be an improvement upon previous versions using only a 
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single resolution [2,3]. A second discretization is performed 

to divide the target image into M number of rectangular 

zones containing approximately equal numbers of pixels. 

The deformed source image is compared to the target using 

an intensity-based image similarity metric (here, the 

correlation coefficient [7]) in the evaluation of the least 
squares error objective function  

∑
=

−
M

m

ESTTRUE SS
1

2
)( (1)

where STRUE is an Mx1 vector of the (maximum) similarity 

values achieved when comparing the target image to itself 

and SEST is the Mx1 vector of similarity between the target 

and model-deformed source image created using current 

estimates of the elastic modulus distribution. It should be 

noted that STRUE has by definition a value of 1 for the 

correlation coefficient. 

The minimization of equation (1) using a Levenberg-

Marquardt approach takes the form  

[ ]{ } [ ]{ }ESTTRUE

TT SSJEIJJ −=∆+ α (2)

where J is the Jacobian matrix of size MxN estimating 

∂S/∂E, ∆E is the Nx1 vectors of updates to the current 

elasticity values, and α is the scalar regularization term for 

the Hessian matrix as described in [8].  

2.2. Material Preparation and Image Acquisition 

For our simulation purposes, a two-material skin phantom 

had been previously constructed [2] as a thin membrane 

measuring 15 cm x 15 cm, with a single 5-cm circular stiff 
inclusion embedded in the center (Figure 1). The phantom 

was manufactured with Smooth-On™ polyurethanes 

(Smooth-On, Easton, PA) Evergreen 10 and Evergreen 50. 

These materials have essentially indistinguishable colors but 

vary significantly in their elastic modulus values, so the 

former was used as the bulk material and the latter for the 

inclusion. Based on material testing, the expected contrast 

ratio of Young's modulus values was determined to be 

approximately 5.7:1.  A black permanent marker was used 

to place a pattern of regularly spaced (~1 cm) grid lines on 

the membrane. The membrane was clamped along two 

opposite edges and then stretched in a uniaxial fashion by 
means of a milling vise. A commercial webcam (Logitech 

QuickCam Pro 4000) was mounted above the assembly to 

acquire image pairs of the membrane in pre- and post-

stretched states (960 x 1280 pixel resolution, 8-bit 

grayscale). 

2.3. Reconstruction Experiments 

Based on prior work, a data set consisting of a 

particular image pair and associated boundary conditions 

known to produce a satisfactory reconstruction was 

designated as the gold standard for the remainder of the 

experiments (Figure 1). In order to test the effect of 

increasing amounts of additive noise on the reconstruction 

algorithm, Gaussian random fields of 1, 5, 10, 15, 20, 25, 

and 30% noise were applied to the base target image in three 

separate trials. This presents a challenge that ascertains the 

ability of the similarity metric and objective function to 

discern a proper match.  

The current method for selecting Dirichlet boundary 

conditions on the finite element mesh is semi-automated and 
requires the user to make a final determination on point 

correspondence. The second experiment was intended to 

simulate the targeting error of the user (e.g. visual cues and 

input device control). Each test involved applying 

randomized vectors of equal magnitude to alter the 

boundary conditions of the gold standard data set. Errors of 

0.1, 0.2, 0.3, 0.5, 0.75, 1.0, 1.5, and 2.0 mesh units (scaled 

to be equivalent to pixel coordinates) were used in two 

separate trials for a total of 16 reconstructions. Sub-pixel 

magnitudes were included after determining that the 

accuracy of selecting a feature point in the image/mesh was 

typically less than or equal to 0.5 units for users ranging 
from moderate to expert skill. 

For all reconstructions, resolutions progressing through 

N = 16, 36, 64, 144, 256, and 400 regions and M = 9 

similarity zones were used; domains were initialized to 

homogeneous elasticity and Poisson’s ratio held constant at 

0.485 to represent nearly incompressible material(s).  

2.4. Reconstruction Analysis 

The final reconstructed elasticity values were modeled as a 

mixture of two Gaussian distributions, and a threshold was 
established to maximize inter-class variation [9] and 

subsequently classify each region as bulk or stiff material. 

Because Dirichlet boundary conditions are exclusively used 

in these reconstructions, the method is only sensitive to 

relative differences in elasticity. The quantities used in 

evaluating reconstruction success are the elasticity contrast 

ratio, localization accuracy of the inclusion, and an overall 

measure designated the ‘quality of reconstruction score’ 

(QRS).  The elasticity contrast ratio (CR) was calculated 

Figure 1.  Experimental phantom membrane system (left) and
input image with overlaid finite element mesh (right). The 
inclusion location is indicated by the arrow and dotted line. The 
mesh designates the actual region reconstructed.
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from the mean values of the two material classes, and the 

positive predictive value of identifying stiff material within 

the independently segmented boundary of the inclusion 

gives a measure of localization accuracy (LA). The quality 

of reconstruction is simply then the product QRS = CR*LA, 

which allows the user to consider the other two measures in 

conjunction. 

3. RESULTS 

Figures 2 and 3 show examples of reconstructions achieved 
under various image noise and boundary condition errors, 

and individual localization errors and contrast ratio values 

are listed in Table 1. Note that the data for the image noise 

experiment was averaged from the three trials, and that the 

data presented for the boundary condition experiment is 

from one [representative] trial. Figure 4 is a plot of the 

reconstruction quality decreasing with increasing image 

noise, and Figure 5 shows the reconstruction quality trend 

plotted against the change in initial alignment error (detailed 

in the following section) relative to that of the gold standard. 

4. DISCUSSION 

From visual inspection of Figure 2, it is apparent that the 

achieved reconstruction becomes more inaccurate with 
increased image noise. However, the ability to identify and 

localize the stiff inclusion is not significantly impaired until 

a noise field of greater than 10% is applied. The threshold 

was found by determining which level of noise provided the 

best minimum sum squared error fit of two lines to the 

distribution of reconstruction quality in Figure 4. This 

would indicate that the similarity metric and objective 

function are robust to intensity deviations of about 6 gray 

levels. While Gaussian noise is one of several possible types 

and may not always be an ideal model, it is still relevant to 

acquisition inaccuracy and corruption processes that may be 

encountered across several medical imaging modalities. The 
use of an intensity-based similarity metric appears to give 

the method an advantage in being generally insensitive to 

reasonably expected amounts of image noise.  

Figure 3 demonstrates that because of the random 

nature of the boundary condition errors, the magnitude is 

itself not an accurate indicator of reconstruction quality. 

This necessitated the introduction of a more suitable 

parameter that accounts for the net effect of the altered 

boundary conditions in order to perform fair evaluations. In 

essence, randomizing the vectors at every node causes the 

optimization to use an unpredictable starting pose and 
increases its chance of converging to an improper minimum. 

Therefore, the ‘initial alignment error’ (AE) is defined as the 

relative percent change between the objective function 

evaluation using the gold standard boundary conditions and 

those of the test case. An as example, it could be assumed 

that vectors of magnitude 0.5 would be a much more 

tolerable error than 2.0, but it is the significantly larger AE 

Figure 2.  Representative reconstructions with image noise. From 

top left: 1, 5, 10, 20, 25, and 30% additive Gaussian noise. The 
reconstructions are visualized as two materials, with whiter areas 

indicating higher elasticity contrast values. 
Figure 3.  Representative reconstructions with boundary condition 
error. Left to right: 0.1, 0.2, 0.3 units (top row); 0.75, 1.0, 2.0 units 
(middle row, trial #1); 0.75, 1.0, 2.0 units (bottom row, trial #2). 
Error magnitudes greater than or equal to 0.5 mesh units are not 

accurate predictors of reconstruction quality.  Table 1.  Reconstruction quality under noise conditions 

Additive image noise 

% Noise 1 5 10 15 20 25 30 

LA 0.92 0.90 0.91 0.70 0.69 0.66 0.56 

CR 3.56 3.45 3.45 3.24 2.88 2.83 2.68 

Gold standard: LA = 0.95, CR = 3.60 
Boundary condition error

Err 0.1 0.2 0.3 0.5 0.75 1.0 1.5 2.0 

AE 0.96 3.32 2.21 102 0.93 32.2 12.6 7.66 

LA 0.87 0.92 0.88 0.59 0.94 0.86 0.86 0.96 

CR 3.63 3.68 3.44 2.91 3.46 3.71 3.78 3.30 

CR = elasticity contrast ratio, LA = localization accuracy 
AE = initial alignment error (%), Err = error magnitude. 
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of the former that actually predicts the poor outcome. 

However, it should also be noted (results not shown here) 

that even if the same set of error vectors are scaled over 

varying magnitudes, there is no clear trend in alignment 

error or reconstruction quality. This appears to imply that 

certain boundary nodes, most likely those in the direction of 

largest strain, have a greater effect on reconstruction and 

merit particular care in selection. Other factors influencing 

unfavorable reconstructions are most likely nonlinear effects 

not predicted by the current model as well as an inherent 

lack of discrimination by intensity-based similarity metrics 
in analyzing the regularity of the imposed grid pattern. 

Nevertheless, for the error magnitudes tested that best 

approximate realistic inaccuracies (i.e. <0.5 units), the 

alignment errors were small and quality of the end 

reconstruction was seen to be quite good. This qualitatively 

validates the current method of determining point 

correspondence as a reasonable procedure with an 

accommodating margin (factor of four) in light of typical 

user interaction.  

5. CONCLUSIONS 

In this work, we have presented a method for recovering 

elasticity parameters from image data of thin membrane 

structures by maximizing the image similarity between two 

different states of mechanical loading within the context of 

an inverse problem. The biomechanical model, multi-

resolution optimization, and image acquisition are each 

modular components of this elastographic reconstruction 

framework, making it extensible to added sophistication. 

Tests were conducted to examine the tolerance of the 

method to degraded or improper inputs. The results indicate 

that the gold standard data set was mostly optimal for 
obtaining a successful reconstruction. Widening disparities 

in either image data or boundary condition selection from 

that in the gold standard caused observable trends of 

declining     reconstruction    quality.       Based    on     these  

observations, it appears that the method handles most 

expected variations encountered in image acquisition as well 

as the majority of typical user inaccuracies. Because there 

are complicated effects associated with mapping of the 

Dirichlet boundary conditions in constraining the 

displacement solution of the model, further study on inter-

rater variability in selection as well as comparisons with 

more automated point correspondence methods is ongoing.  
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Figure 4.  Reconstruction quality vs. percent additive image noise. 

The drop-off after 10% additive noise indicates the threshold of
tolerance for the method. 

Figure 1 

Figure 5.  Reconstruction quality vs. percent change in initial 
alignment relative to gold standard.  The majority of errors tested

produced satisfactory reconstructions.
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BACKGROUND

PRELIMINARY TESTING OF SENSITIVTY TO INPUT DATA QUALITY IN 
AN ELASTOGRAPHIC RECONSTRUCTION METHOD

Jao J. Ou, Stephanie L. Barnes, and Michael I. Miga
Vanderbilt University, Department of Biomedical Engineering, Nashville, TN  37235

Changes to the local cytoarchitecture induced in a variety of pathologies can manifest 
as alterations in tissue elasticity that are relevant in clinical examination and evaluation. 
Many elastography methods are typically dependent on the specific modality around
which they were developed (e.g. magnetic resonance and ultrasound imaging). We 
have developed ‘modality-independent elastography’ (MIE) as a reconstruction method 
that recovers the material properties of soft tissue via model-based analysis of image 
data acquired at different states of mechanical loading. The algorithm utilizes image 
similarity in the performance of a multi-resolution, non-linear optimization. Previous 
work with a phantom membrane used for simulated dermoscopic applications prompted 
this preliminary investigation of the relative effects of additive image noise and 
boundary condition determination errors on the performance of the method. The results 
as quantified by elasticity contrast and localization accuracy indicate that the 
reconstruction process is robust in the presence of realistic levels of image corruption 
and tolerates the majority of boundary condition mapping errors.

The inputs to the reconstruction process are in two major forms: image data and 
boundary condition estimation. Inadequate fidelity in either quantity is capable of 
affecting the success of the reconstruction through some form of model-data mismatch. 
We proposed to test the sensitivity of the algorithm to various levels of an applied noise 
process by altering either the intensity distribution of the target image or the 
displacement vectors defining the Dirichlet boundary conditions.

This work was supported in part by a Whitaker Foundation Young Investigator Award and a Congressionally Directed Medical Research Program Breast Cancer 
Research Program Pre-doctoral Fellowship.

inclusion

PURPOSE

Figure 1.  Flow chart of MIE.  After acquisition, source and target images (A) are discretized into regions and zones, respectively. The reconstruction process 
involves updating elastic modulus values (B,E) to drive a finite element model-based image deformation (C) until the best match is found (D).
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Figures 3 and 5 show that the achieved reconstruction becomes more inaccurate with increased image noise. However, the ability to 
identify and localize the stiff inclusion is not significantly impaired until a noise field of greater than 10% is applied. The threshold was 
found by determining which level of noise provided the best minimum sum squared error fit of two lines to the distribution of 
reconstruction quality. This would indicate that the similarity metric and objective function are robust to intensity deviations of about 6 
gray levels in an 8-bit image. While Gaussian noise may not always be an ideal model, as a preliminary point of investigation, it is still 
relevant to acquisition inaccuracy and corruption processes that can be encountered across several medical imaging modalities. 

Figure 4 demonstrates that the magnitude of the random vectors is itself not an accurate indicator of reconstruction quality because 
the multiple degrees of freedom afforded by the boundary nodes cause the optimization to use an unpredictable starting pose, 
increasing the chances of converging to an improper local minimum. This necessitated the introduction of the initial alignment error 
(AE) to provide a consistent means of comparison between trials (Figure 6). As a further example, it could be assumed that vectors 
of magnitude 0.5 would be a much more tolerable error than 2.0, but it is the significantly larger AE of the former that actually 
predicts the poor outcome. It should also be noted (results not shown here) that even if the same set of error vectors are scaled over 
varying magnitudes, there is no clear trend in alignment error or reconstruction quality. This appears to imply that certain boundary 
nodes, most likely those in the direction of largest strain, have a greater effect on reconstruction and merit particular care in 
selection. Nevertheless, for the error magnitudes that approximate inaccuracy in boundary condition demarcation (i.e. <0.5 units), the 
quality of those reconstructions was satisfactory. This qualitatively validates the current method of determining point correspondence 
as a reasonable procedure with an accommodating margin (factor of four) in light of typical user interaction. Further research is 
ongoing into validation and control of boundary conditions, as well as more automated methods of point correspondence.

Figure 5.  Reconstruction quality vs. image noise.
Three trials of image noise were performed (shown averaged and with 
standard error bars); the drop-off in reconstruction quality indicates 
the presence of a threshold at approximately 10% additive Gaussian 
noise. 

Figure 6. Reconstruction quality vs. boundary condition 
noise.
Two trials of eight levels of noise ranging from 0.1 to 2.0 mesh units 
were performed. Each reconstruction was treated as a separate data 
point based on its initial alignment error, defined here as the relative 
change between the objective function evaluation using the gold 
standard boundary conditions and those of the [randomized] test 
case. 

Figure 4.  MIE boundary condition noise reconstruction experiment.
Randomized vectors of a particular magnitude were applied to the boundary condition specifications of the same finite element mesh used for all reconstructions. This 
simulates targeting error by the user in the currently semi-automated method of point correspondence selection, and the effect is illustrated in the top row: from left to 
right, the gold standard boundary and then with mis-estimation of 0.75, 1.0, and 2.0 mesh units (equivalent to pixel coordinates) in the Dirichlet conditions (slightly 
exaggerated scale for visual effect). The corresponding reconstructions in the middle and bottom rows demonstrate that two different trials using the same magnitude of 
randomized vectors can effect very different levels of reconstruction quality. 

% additive noise initial alignment error (AE)

Figure 3.  MIE image noise reconstruction experiment.
Gaussian random fields of variable strength with respect to the 
variance of non-background pixel values were applied in an 
additive fashion to the target image. Shown in the left column 
from top to bottom are the original target and then with 10%, 
20%, and 30% noise. In the right column are the corresponding 
elasticity reconstructions after application of a thresholding
scheme to classify bulk (black) and inclusion materials 
(white/gray). The known segmentation of the inclusion was used 
to retrospectively calculate the positive predictive value of 
identifying the correct material type within the proper boundaries 
as well as the mean elasticity contrast of the overall distribution. 
For this work, our overall evaluation of reconstruction quality is 
expressed as the product of these two quantities. The effect of 
additive noise is to decrease reconstruction quality as evidenced 
in the progressively poorer localization of the inclusion. 

Figure 2.  MIE reconstruction experiment.
(Left panel) A two-material phantom mimicking 
skin was constructed as a thin membrane 
measuring 15 cm x 15 cm, with a single 5 cm 
circular stiff inclusion embedded in the center. The 
phantom was manufactured with like-colored 
polyurethanes which have an inclusion-to-bulk 
elasticity contrast of approximately 5.7:1. The 
membrane was stretched in a uniaxial fashion 
while a CCD camera mounted above acquired 
image pairs of the membrane in pre- and post-
deformed states (960 x 1280 pixel resolution, 8-bit 
grayscale).

(Right panel) Top row: Source and target images 
with overlay of finite element mesh boundaries 
(red) that demarcate the area reconstructed. 
Below: Reconstruction progression over increasing 
number of regions (N = 16, 64, 256, 400) to refine 
the spatial distribution of elasticity values. This 
reconstruction serves as the gold standard for the 
remainder of this work.
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ABSTRACT 

 
A significant amount of breast cancer research in recent years has been devoted to novel means of tumor detection 

such as MR contrast enhancement, electrical impedance tomography, microwave imaging, and elastography.  Many of 
these detection methods involve deforming the breast.  Often, these deformed images need to be correlated to anatomical 
images of the breast in a different configuration.  In the case of our elastography framework, a series of comparisons 
between the pre- and post-deformed images needs to be performed.  This paper presents an automatic method for 
determining correspondence between images of a pendant breast and a partially-constrained, compressed breast.  The 
algorithm is an extension to the symmetric closest point approach of Papademetris et al.  However, because of the unique 
deformation and shape change of a partially-constrained, compressed breast, the algorithm was modified through the use 
of iterative closest point (ICP) registration on easily identifiable sections of the breast images and through weighting the 
symmetric nearest neighbor correspondence. The algorithm presented in this paper significantly improves 
correspondence determination between the pre- and post-deformed images for a simulation when compared to the 
original Papademetris et al.’s symmetric closest point criteria. 

 
Keywords: deformation, registration, finite element, breast cancer, elastography, soft-tissue mechanics 
 

1. INTRODUCTION 
 

In a 2001 report released by the American Cancer Society, a woman in the United States had a 1 in 8 lifetime risk of 
developing breast cancer, and these odds increased depending on factors such as age, family history, ethnicity, and 
genetic predisposition.  It also presented statistics illustrating the strong connection between survival rate and stage of 
cancer development at diagnosis (localized (96.4%), regional (77.7%), and distant (21.1%))*[1].  Given the obvious 
benefits of extended lifetime with early diagnosis, there has been a resultant push to increase the sensitivity and 
specificity of current imaging methods and modalities.  However, in addition to improving upon current tumor-detection 
methodologies, much recent research has been devoted to novel imaging techniques devised to supplement diagnosis. 

 
Many of these new techniques are based upon the exploitation of constitutive properties of tissue, e.g. electrical, 

optical, or stiffness properties.  The differences between healthy and cancerous tissue with regards to these properties has 
been investigated to varying degrees for a number of years and suggested results have been forthcoming [2-4].  
Currently, the use of the differences in these properties as a tumor detection method can be seen through microwave 
imaging [5], electrical impedance tomography (EIT) [6], near-infrared tomography [3], ultrasound elastography (USE), 
magnetic resonance elastography (MRE), and, most recently, in modality independent elastography (MIE) [7].  Many of 
these detection methods, particularly elastography, involve deforming the breast and comparing the pre- and post-
deformed images of the breast.  In addition, there are other methods whereby deformations occur due to repositioning of 
the patient as in MR contrast enhancement [8]. 

 
The purpose of this paper is to present an algorithm that automatically determines correspondence between images 

of the pendant and deformed breast geometry.  This algorithm is based on the symmetric nearest neighbor algorithm 
presented by Papademetris et al. [9]; however, the algorithm presented in this paper uses certain geometric characteristics 
of the breast to improve upon the accuracy of Papademetris et al.’s method.  Due to the unique deformation and shape   

* These statistics represent the 5-year survival rate. 
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change of a partially-constrained, compressed breast, the algorithm was modified through the use of iterative closest 
point (ICP) registration on easily identifiable sections of the breast images, and it included weighting the symmetric 
nearest neighbor correspondence.  The work presented here has implications within the modality independent 
elastography method presented by Miga et al. [7, 10] as well as for the multi-modal registration among alternative 
imaging techniques for breast cancer. 

 
2. MATERIALS AND METHODS 

 
2.1. Breast surface correspondence algorithm 

A model of a human breast is generated in the pendant position based on breast CT data (courtesy of John M. 
Boone, Ph.D., Professor of Biomedical Engineering, University of California at Davis [11-12]).  Using a finite element 
model, a deformation simulating the inflation of a membrane pressing against the breast is performed, creating a 
deformed breast geometry.  Correspondence between point clouds of the pendant breast and the compressed breast is 
performed using a multi-step procedure based on the symmetric closest point algorithm of Papademetris et al. The 
algorithm was modified such that easily identifiable regions are constrained using an iterative closest point (ICP) 
registration to initially establish correspondence.  End correspondence of a point is still partially determined by its 
neighbors’ correspondence.  Thus, the algorithm consists of four main steps: ICP registration of the base and nipple 
regions of the breast, the initial correspondence determination by symmetric nearest neighbors, the “propagating front” 
of the correspondence through the remaining points in the point cloud, and the final smoothing and mapping of the 
correspondence. 
  

For purposes of simplicity, the following nomenclature will be used in describing the algorithm: the point cloud that 
defines the pendant breast is the source point cloud, s1, and the point cloud that defines the partially-constrained, 
compressed breast is the target point cloud, s2.  Also, a “faux registration” of s1 to s2 means that the rotation and 
translation matrices necessary to ICP register s1 to s2 are known, but the actual registration of s1 to s2 does not take place.  
Furthermore, the algorithm is constructed for a super-sampled target point cloud. 
 
2.1.1. Initial correspondence via ICP partial volume registration 

The purpose of this step is to use the more prominent geometric characteristics of the breast and the fixation of the 
breast at the chest wall, namely the regions around the nipple and the base of the breast, as a location for accurately 
determining initial correspondence.  However, due to the compression, the nipple of the deformed breast (the target point 

 
Figure 1: Point clouds of the deformed and pendant breast, with the top 20% of the pendant breast registered to the deformed breast 
according to the rotation and translation matrices provided from a faux registration of the top 46.25% of the breasts. 
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cloud) is translated and lies at a different angle than the nipple of the pendant breast (the source point cloud).  By 
minimizing the average distance from the points in the nipple region on the registered source point cloud to the points in 
the nipple region on the target point cloud, the nipple regions of the pendant and deformed breast are most accurately 
aligned.  (The average distance means the average Euclidean distance between a point on the source point cloud and its 
closest point on the target point cloud.)  For the nipple region registration (which the nipple region is assumed to reside 
at the upper 20% of the breast’s height), there exists a certain height percentage, ψ, such that if all points of the pendant 
breast at or above ψ were faux registered to all of the points of the deformed breast at or above ψ, then the resultant 
rotation and translation matrices would minimize the distance between nipple regions of the pendant and deformed 
breast.  This height percentage, ψ, is determined as follows: a binary search algorithm faux registers a range of height 
percentages, from the upper 50% to the upper 20% of the breast height.  The algorithm then compares the average 
distance between the nipple regions for the rotation and translation matrices produced by the faux registration.  The 
height percentage that produces the minimal distance between nipple regions is designated ψ.  Finally, by using the 
rotation and translation matrices defined by the registration of the ψ percentage, the nipple region of the source point 
cloud is registered to the nipple region of the target point cloud (see Figure 1), and initial correspondence between the 
point clouds can now take place.  This process is repeated for the base regions (i.e. the lower 5% of the breast height) of 
the source and target point clouds. 
 
2.1.2. Symmetric nearest neighbor correspondence 
 

Initial correspondence is restricted to the registered regions of the point clouds (the nipple and base regions).  
Correspondence is achieved through a method Papademetris et al. coined “symmetric nearest neighbor.”  For a point p1 
on the source point cloud s1, the closest point to p1 on the target point cloud s2 is p2.  In other words, p2 is chosen such 
that the distance from p1 to p2 is the shortest Euclidean distance possible when compared to the Euclidean distance 
between p1 and any other point on s2.  p2 then determines its closest point on s1  to be P.  If p1 = P, then the points p1 and 
p2 are corresponding and called symmetric nearest neighbors.  The vector from p1 to p2 is called a corresponding vector. 

 
2.1.3.  “Propagating front” of correspondence 

Correspondence then continues to be established using a “propagating front” methodology in which points on the 
source point cloud that have neighbors with a high degree of correspondence are the first candidates for establishing 

 
Figure 2: Simple diagram of a “propagating front” of correspondence.  The weighted average of the symmetric closest point vectors 
from c1, c2, c3 to b1, b2, b3 create vAVE.  p1 is a point that does not have correspondence.  P is created by projecting along vave from p1, 
and the closest point p2 to P becomes p1’s corresponding point (with corresponding vector vCORR).  Correspondence then bleeds to T, 
which now uses vCORR in the creation of its weighted average vector. 
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correspondence, as shown in Figure 2.  For point p1 on s1, the first- and second-order neighboring points of p1 in s1 that 
already have correspondence are c1, c2,…cn (points b1, b2,…bn are  the corresponding points of c1, c2,…cn on the target 
point cloud s2,.and their corresponding vectors are v1, v2,…vn).  An average of the corresponding vectors v1, v2,…vm 
weighted by the distance of c1, c2,…cn to p1, is then computed and is denoted vAVE.  A temporary point, P, is then 
projected by vAVE from p1, and the closest point (as determined by Euclidean distance) on s2 to P is p2. p2 is the 
corresponding point for p1.  The vector from p1 to p2 is the corresponding vector, vCORR.  p2 can be any point in s2 unless it 
is b1, b2,…bn.  In this case, the next closest point to P on s2 that is not b1, b2,…bn is the corresponding point to p1.  This 
step will provide correspondence for every point in the source point cloud as long as there is at least one initial point 
correspondence between the source and target point clouds.  The algorithm continues in an iterative fashion such that 
correspondence will be determined only for those points in s1 with a maximum number of neighbors with 
correspondence.   
 
2.1.4. Smoothing and mapping 

After every point in the source point cloud has correspondence, the entire point cloud undergoes a smoothing and 
mapping to reach a final correspondence.  Point p1 of source point cloud s1 has neighboring points c1, c2,…cn .  Points c1, 
c2,…cn have corresponding points b1, b2,…bn in the target point cloud s2, and their corresponding vectors are v1, v2,…vn.  
An average of the corresponding vectors v1, v2,…vn, weighted by the distance of c1, c2,…cn to p1, is computed and 
denoted vAVE.  A temporary point, P, is then projected by vAVE from p1, and the closest point (as determined by Euclidean 
distance) from s2 to P is p2 , which is the final corresponding point of p1. 
 
2.2. Breast deformation simulation 

In order to test the algorithm described above, a finite element (FE) model of a breast was generated based on a 
subject’s CT image volume.  The biomechanics of breast deformation was described using a three-dimensional linear 
elastic Hookean solid.  Once the geometry was generated, boundary conditions were implemented that simulated the 
compression of the breast by an adjacent balloon inflation cuff.  Figure 3 shows the geometry and the boundary 
conditions applied.  Results from varying the strength of the stress field can be seen in Figure 4.  Figure 4a shows the 
pre-post compression of the breast subject to the boundary conditions in Figure 3.  Figure 4b and 4c represent different 
inflation states, 75% and 50% respectively.   By using a finite element model, exact correspondence between source and 
target can be established and used to rate the algorithm performance.  It should be noted though that the target cloud, i.e. 
deformed finite element breast mesh, was super-sampled to allow for more variability when executing the 
correspondence algorithm.  In the clinical context, the point-cloud representations would represent two unique image 
acquisitions so a corresponding structured grid (as provide by the FE mesh) would not exist. 
 

 
Figure 3.  Finite element breast model with boundary conditions shown.  Grayscale represents the application of a normal stress 
in kPa.  The base of the volume was fixed. 
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3. RESULTS 

 

 
     (a)     (b)        (c) 
Figure 4: Pendant and deformed breast point clouds for a. 100% simulation b. 70% simulation and c. 50% simulation. 

 a b        

c   d 
Figure 5. (a) Distribution of correspondence error using the proposed algorithm with the 100% deformation FE simulation.     
(b) Distribution of correspondence error with the 70% simulation. (c) Distribution of correspondence error with the 50% 
simulation.  (d) Distribution of correspondence error for 100% deformation FE simulation using Papademetris et al.’s algorithm. 
Grayscale shown is common to all figures. 
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Figure 5a-c shows the result of running the various simulations through our algorithm while Figure 5d shows the 
result of running the 100% simulation with using solely the symmetric closest point criteria of Papademetris et al.’s 
algorithm.  The shading of each deformed breast is root mean square (RMS) error of the distance from the predicted 
target corresponding point and the actual target corresponding point.  Figure 6 compares the RMS error and maximum 
error (again, the distance from the predicted target corresponding point to the actual target corresponding point) of our 
algorithm versus the maximum displacement compression exerted on the breast for each simulation.  Additionally, the 
maximum error for Papademetris et al.’s algorithm and the 100% simulation is 2.78 cm, and the RMS error is 1.02 cm. 

 

 
4. DISCUSSION 

 
Figure 5a-c demonstrates that our algorithm, overall, assigns correspondence from the pendant to the deformed 

breast reasonably well, especially at less severe deformations.  Figure 6 provides further support, demonstrating that the 
relatively low RMS error ranges from 1.2 mm for the 50% simulation to 6.0 mm for the 100% simulation.  Furthermore, 
there is a linear relationship between degree of compression and the maximum and RMS error for our algorithm, with 
both errors decreasing as the degree of compression decreases.  However, there is still error in the correspondence 
assignments, primarily at the site of compression.  This error is due to the algorithm’s inability to cope with the steep 
point translations associated with the depression; the algorithm continues to assign correspondence to the edge of the 
depression rather than penetrating into the depression.  This suggests that further research into the incorporation of some 
other type of information into our algorithm is needed for greater accuracy.  But, as evidenced by Figure 5d, our 
algorithm is significantly more accurate than the original Papademetris et al. algorithm.  While the Papademetris et al. 
algorithm handles the depression approximately as well as our algorithm with a maximum error of 2.78 cm (compared to 
our algorithm’s maximum error of 2.68 cm for the same simulation), the accuracy of the correspondence assignments 
continues to decrease up into the nipple region.  This results in a RMS error of 1.02 cm, which is significantly higher 
than our RMS error of 6.0 mm.  It should be noted though that only the symmetric closest point portion of the 
Papademtris et al. algorithm has been implemented.  The algorithm in its entirety also utilizes a curvature mapping 
aspect for their particular application in cardiac deformation mapping.  Usage of curvature information would not be 
useful for breast applications due to its geometrically homogeneous nature. 
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Figure 6: Comparison of the maximum displacement in the depression of the breast to the RMS error (●) and the maximum error 
(■) for the 100% simulation (right points), 70% simulation (middle points) and 50% simulation (left points). 
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The main reason our algorithm is more accurate than just utilizing the symmetric closest point algorithm is due to 
the first step, the initial registration of the nipple and base regions, which constrains the search greatly.  By rigidly 
registering the nipple and base regions, the initial pass of establishing correspondence is highly accurate.  In the original 
algorithm, the initial pass of determining correspondence frequently was inaccurate (the entire point cloud was permitted 
to initially establish correspondence), particularly at the nipple region.  Because the deformed breast’s nipple was 
translated away from the pendant breast’s nipple, correspondence was established between the far side of the pendant 
breast’s nipple and the near side of the deformed breast’s nipple as opposed to the far side of the deformed breast’s 
nipple.   

 
At this time, it needs to be noted that this paper’s algorithm needs further study with respect to the number and type 

of test cases (this algorithm assumed the nipple resided in the upper 20% of the breast’s height, which may not always be 
the case).  The ICP registration of the nipple region may introduce an error when our algorithm is used with other 
simulations.  ICP registration may produce a rotation causing the source point cloud to spin around the longitudinal axis 
of the breast (a full 180° in the most extreme case) resulting in inaccurate correspondence.  Given the intention of the 
step is to provide accurate correspondence of the nipple (an easily identifiable structure), a more robust algorithm that 
prohibits significant rotation may be needed.  In addition, we should also note that without careful validation of the FE 
model for deformation, it may be that the boundary conditions represented by Figure 3 do not accurately describe the 
displacements associated with an inflating adjacent balloon.   

 
5. CONCLUSIONS 

 
The addition of rigid registration initialization of the chest-wall and nipple region of the breast to the Papademetris 

et al. symmetric closest point criteria significantly improves the accuracy of the approach for the breast’s morphology.  
While the maximum error located in the center of the depression remains high for our algorithm at 2.68 cm (similar to 
Papademetris et al.’s maximum error of 2.78 cm), the RMS error is significantly improved to 6.0 mm (as compared to 
Papademetris et al.’s RMS error of 1.02 cm).  Furthermore, it is clear that the algorithm demonstrates an increase in 
accuracy as the degree of compression is decreased.  Finally, the use of other geometric information and additional 
experimentation with test cases may enhance this algorithm to provide more robust and accurate determination of 
correspondence. 
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ABSTRACT 

 Multiple skin conditions exist which involve clinically significant changes in elastic properties.  
Early detection of such changes may prove critical in formulating a proper treatment plan.  However, 
most diagnoses still rely primarily on visual inspection followed by biopsy for histological analysis.  As a 
result, there would be considerable clinical benefit if a noninvasive technology to study the skin were 
available.  The primary hypothesis of this work is that skin elasticity may serve as an important method 
for assisting diagnosis and treatment.  Perhaps the most apparent application would be for the 
differentiation of skin cancers, which are a growing health concern in the United States as total annual 
cases are now being reported in the millions by the American Cancer Society.  In this paper, we use our 
novel modality independent elastography (MIE) method to perform dermoscopic skin elasticity 
evaluation.  The framework involves applying a lateral stretching to the skin in which dermoscopic 
images are acquired before and after mechanical excitation.  Once collected, an iterative elastographic 
reconstruction method is used to generate images of tissue elastic properties and is based on a two-
dimensional (2-D) membrane model framework.  Simulation studies are performed that show the effects 
of three-dimensional data, varying subdermal tissue thickness, and nonlinear large deformations on the 
framework.  In addition, a preliminary in vivo reconstruction is demonstrated.  The results are 
encouraging and indicate good localization with satisfactory degrees of elastic contrast resolution.  

KEY WORDS:  Elastography, Dermoscopy, Mechanical Properties, Finite Element, Image Similarity, 
Elasticity Imaging 

1. INTRODUCTION

 Because multiple conditions exist which involve clinically significant changes in skin elasticity, 
early detection of such changes could prove critical in formulating a proper treatment plan.  However, 
most diagnoses still rely primarily on visual inspection followed by biopsy of suspect areas for 
histological analysis.  Perhaps the most apparent application would be for the differentiation of skin 
cancers, which are a growing health concern in the United States as total annual cases are now being 
reported in the millions by the American Cancer Society1.  Of the three major types of skin cancer 
reported annually, basal cell carcinoma (BCC) makes up approximately 800,000+, squamous cell 
carcinoma (SCC) cases number approximately 200,000+, and a remaining 60,000+ melanoma cases. With 
respect to BCC, approximately 5-10% of these can be aggressive and infiltrate the surrounding tissue and 
sometimes into bone and cartilage.  It rarely metastasizes but can cause scars and disfigurement.  With 
respect to SCC, early detection is the key to successful treatment.  If left unchecked, SCC can also cause 
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disfigurement and typically approximately 3-4% of cases results in metastasis which is usually fatal.   
Melanoma is the most fatal.  Melanoma is malignant and if left unchecked, it will spread to other parts of 
the body, becomes difficult to treat, and can be fatal.  If one were to include among the common cancer 
statistics, aggressive BCC’s and metastatic SCC’s, skin cancer would likely be the second most prevalent 
among newly diagnosed cancers. 
 While the above statistics are compelling, when speaking to lethality, skin cancer is less 
significant than its more fatal counterparts in breast, lung, colon/rectal, and prostate.  However when 
considering the economic cost that skin cancer incurs on US healthcare, the pursuit of skin cancer 
characterization has considerable merit.  The ability to differentiate benign from malignant, and 
aggressive from non-aggresssive skin lesions would provide considerable savings to health care costs 
within the United States.  Each year it is estimated that approximately 5-7 million patients undergo 
biopsies for skin cancer with only a fraction resulting in malignancies.  While complete multi-center 
biopsy studies have not been performed, one study that took place documented the percentage of skin 
biopsy specimens that were malignant, i.e. they termed this the “malignancy ratio” 2.  In this study, the 
malignancy was approximately 40% with a very wide variability among the 22 dermatologists (13.4-
86.6%) that participated in the study.  If one considers 5 million biopsies, this would translate to 
approximately 3 million unnecessary biopsies per year, and approximately $300-600 million in saved 
expenditures per year 3, 4.  Furthermore, this does not even include cosmetic surgery costs in the case of 
scarring or complications associated with bleeding and infections.  If an inexpensive imaging device 
could differentiate lesions with reasonably high specificity and sensitivity, it would have considerable 
significance.
 It should also be noted that measuring cutaneous elasticity is also potentially important to medical 
areas outside of clinical dermatology. For instance, in a recent study of 100 women receiving hormone 
replacement therapy, Pierard et al demonstrated a positive correlation between bone mass density and 
skin elasticity 5, 6.  Another study conducted by Yoon et al showed a similar relevance for patients 
afflicted with diabetes mellitus 7.  Further uses for evaluating skin elasticity range from surgery 
(minimization of scarring, chronic graft versus host disease) to rheumatology (scleroderma, lupus) to 
obstetrics (striae development in pregnancy) 8-12.

With respect to diagnostic technological advances, developments have been concerned with 
obtaining a better view of the skin, either via improved optics (i.e. dermoscopy) or by more advanced and 
novel imaging systems ranging from high-frequency ultrasound to confocal laser microscopy 13, 14. Other 
strategies involving electrical impedance mismatch 15, Raman spectroscopy 16, and cytological smears 14

have also been forthcoming.  In lieu of these methods that capitalize on electrical, optical, and 
biochemical phenomena, we have chosen to pursue an approach which is based on analyzing mechanical 
behavior of the skin.  Detecting changes in tissue by palpation and then associating them with a disease 
state has a long-standing history in clinical medicine, and utilizing changes in the mechanical properties 
to specifically characterize the skin does have precedent.  A thoughtful review by Edwards and Marks 
discusses the complex mechanical behavior of skin when subjected to in vitro and in vivo testing 17.  Their 
review highlights extensive methodologies being used to quantify skin properties (e.g. uni-axial and bi-
axial extensometry, torsion stimulators, indentometery, ballistometric tests, shear wave application 
devices, dynamic suction methods, ultrasonics, and electrodynamometry) and also emphasizes the 
difficulties in comparing across these methods.  One of the authors' conclusions is that the need for 
quantitative reproducible methods to assess skin health is necessary given the considerable subjectivity in 
clinical analysis.
 Following previous work in 18, we are developing a new method we have termed ‘modality-
independent elastography’ (MIE) that combines image processing with an inverse problem.  More 
specifically, image similarity metrics routinely used with image registration methods are recast to satisfy 
an inverse elasticity problem framework whereby mechanical properties within a biomechanical model of 
deforming tissue become the driving parameters for improved image similarity.  In this way, MIE 
circumvents two potential limitations of current elastographic techniques. First, it is not inherently 
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dependent on pre-processing steps such as homologous feature selection and tracking which drive active 
contour models 19-21 and other traditional displacement-based iterative methods22-24, although such 
techniques can aid in the determination of boundary conditions. Secondly, because it is an image 
processing methodology, MIE is not reliant on a particular imaging modality (such as in ultrasound and 
magnetic resonance elastography) as long as the acquired images provide sufficient pattern to allow for 
comparison.  Building upon recently with a multi-resolution implementation25, this paper presents 
analysis using a tissue model that incorporates geometric nonlinearities, the effects of the three-
dimensional nature of the problem which include varying subcutaneous layer thicknesses, and varying 
lesion depth.  In addition, a relatively crude preliminary in vivo result is also demonstrated.  

2. MATERIALS AND METHODS 

2.1.  Modality Independent Elastography 

 MIE begins with the acquisition of an image series consisting of an image acquired prior to and 
after an applied deformation.  The method is “independent” because it does not require any specific 
imaging modality but rather that sufficient pattern is present within the acquired images such that material 
properties can be assessed from pattern changes within the acquisition-pair.  This is a similar requirement 
for many methods of non-rigid image registration.  At its core MIE is an image analysis method whereby 
a model-generated deformation field is applied to the pre-deformed image series (source) and compared 
to its acquired deformed counterpart (target).  This comparison is nested within a Levenberg-Marquardt 
optimization routine such that the material properties become the parameters of interest in matching the 
model-deformed source image to the acquired target image.  The methods and development of this 
technique have been reported in detail elsewhere18, 25-29.
 With respect to the optimization framework for MIE, it can be represented as a least squared error 
objective function: 

2

Et ESESminE    (1) 

where tES  is the similarity value achieved when comparing the target image to itself (i.e. the maximum 

value for the similarity measure, so for the correlation coefficient 1tES ) and EES  is the similarity 
between the model-deformed source image and the acquired target image using the current estimate of the 
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elastic modulus.  Eq. (1) is optimized by setting the partial derivative equal to zero and solved using a 
Levenberg-Marquardt approach: 

Et
TT ESESJEI]J][J[  (2) 

where ]J[  is the M x N Jacobian matrix of the form 
E
ESJ E  and M is the number of similarity 

measurements (i.e. zones) being made and N is the number of material property regions.  Because 
]J][J[ T  (an approximation to the Hessian matrix) tends to be ill-conditioned, it is regularized with an 

empirically determined  parameter found in the standard Levenberg-Marquardt approach30.  The 
determination of this regularization parameter is described in 31.  The multi-resolution framework to MIE 
is shown in Fig. 1.  The methodology used involves a hierarchical material parameter resolution series.  
This has been reported elsewhere 25, 27 and has been shown to assist in avoiding local minima that are 
associated with the decorrelation of patterned data. 

2.2.  Model for Skin 

One critical component within all model-based inverse problem frameworks is the selection of 
the computer model to represent the continuum of interest.  In previous phantom, simulation, and in vivo 
studies, we have elected to employ a plane stress linear elastic model to simulate the skin.  This model is a 
two dimensional approximation of the three dimensional system which assumes a symmetric, isotropic, 
thin specimen in equilibrium, and stresses that are constrained to lie within the plane. These assumptions 
simplify Cauchy’s law from 36 stiffness constants to 2 and use the equation:  

0   (3) 
where  is the 2D Cartesian stress tensor and is defined below followed by the plane stress constitutive 
equations:
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where E is Young’s modulus, and is Poisson’s ratio.  For this work, we have determined that a Poisson’s 
ratio of 0.485 for our skin phantoms and tissue work has performed reasonably well.  This value would 
correlate with a ~32:1 ratio of the Lame  constants  with the shear modulus, and being the 
second Lame  constant) which is reasonably below the convention for Poisson locking (sometimes called 
mesh locking and typically has ) although one could argue that hyperelastic models may be the 
more appropriate model and will need to be explored in the future.  Using the Galerkin weighted residual 
method to integrate and solve this set of partial differential equations, a finite element framework is 
generated and can be solved to represent a displacement field for a given distribution of Young’s 
modulus.   
 In this paper, the plane stress model has been enhanced to incorporate the full Green-Lagrange 
strain tensor as defined by: 
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Use of this tensor description abandons the traditional small-strain approximation in favor of one 
compatible with large deformations.  The difference in solutions between small and large deformation 
theory can be seen in the 2D simulations shown in Fig. 2.  Fig. 2 compares the boundary shape of a 
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Hookean linear elastic membrane to a 2D Hookean geometrically nonlinear elastic model.  For these 
simulations, a plane stress approximation was performed for comparison only of the solution due to 
nonlinear terms (i.e. a ~30-40% compressive stress could never be applied to a thin specimen, the 
material would buckle well before).  The important aspect to notice is that more necking and less bulging 
occur in the nonlinear than the linear model in tension, and compression, respectively.  With respect to the 
difference in the linear model among Fig. 2a and 2b, 2b is the reverse of 2a (this is a characteristic of 
linear theory).  However, the lack of this symmetry for the nonlinear model is characteristic of the Green-
Lagrange strain tensor and is caused by the interplay between the linear and quadratic terms in the tensor.   
In this paper, the results from the linear and nonlinear model will be compared.   

2.3.  Nonlinear Model Experiments 
 In previous work, a phantom of 
simulated skin was generated from using a 
polyurethane membrane 25 cm long, 15 cm 
wide, and approximately 2 mm thick containing 
two types of materials.  The bulk material, representing “normal” skin, was chosen to be Evergreen 10 
(Smooth-On, Easton, PA), while the stiffer Evergreen 50 was used to create a 5 cm circular inclusion of 
full depth and was placed at the center of the phantom.  The visible surface of the phantom was modified 
by drawing a regular grid of horizontal and vertical lines spaced about 1 cm apart in either direction.  Fig. 
3 shows the skin phantom as acquired by an optical camera at the baseline, 1 cm, and 2cm stretch levels.  
Separate mechanical tests on the membrane were conducted using the EnduraTEC ELF 3200 material 
tester (EnduraTEC Systems Group, Bose Corporation, Minnetonka, MN) 25. Table 1 reports the expected 
Young’s Modulus contrast ratio based on a Hookean solid fitted to each respective stretch/strain level.  
The scale of lesion to field-of-view size is the anticipated aspect ratio for a dermoscopic system.  This 

a b c
Fig 3.  Phantom membrane stretches (a) baseline, (b) 1 cm stretch, (c) 2 cm stretch. 

Stretch CR (Linear) CR (Nonlinear) 
1 (0.5 cm) 5.7 5.0 
2 (1.0 cm) 5.0 4.8 
3 (1.5 cm) 4.6 4.7 
4 (2.0 cm) 4.2 4.4 

Table 1.  Expected elastic contrast ratio. 

a b
Fig. 2.  (a) Fixed ~30-40% tensile strain applied to original with linear and nonlinear model, (b) ~30-40% 
compressive strain. 

36



image data was used as an input to the MIE 
framework, and reconstructions comparing the 
linear and nonlinear model were generated. 

2.4.  Three-Dimensional Model Experiments 
 In an effort to test the MIE algorithm with 
more realistic images of the skin as would be 
expected in the clinic, a simulation study was 
performed on an image obtained from the 
Dermatology Image Atlas project 
(www.dermatlas.org, “melanoma_1_040510”, 
contributed by Eric Ehrsam, M.D., Fig. 4a).  
Dermoscopic images provide the challenge of 
relying on the natural pattern instead of the structured grid used in the membrane phantom experiments 
(although the skin could be printed upon with an ink grid).   Previous simulation work on this image can 
be found in 25.
 One possible critique of this dermoscopic framework is the fear that underlying layers would 
confound the approach.  As a result, we have modified the simulation study reported in 25 (e.g. Fig. 4b) to 
be more realistic.  Fig. 5a-5c shows the setup of the new simulation study.  In this study, six 10 cm x 10 
cm domains were constructed which had different layered structures.  Three domains were 6mm in total 
thickness (~4mm epidermis/dermis, 2mm subcutaneous) and had 1cm central inclusions varying in depth 
1mm, 2mm, and 3mm, respectively.  The remaining three domains were the same except that the 
subcutaneous layer thickness was increased to 7mm.  The selection of subcutaneous layer thickness 32, 33

and stiffness values34 were based on the literature.  Using this domain, a mechanical aperture that 
stretched the skin was simulated, 3D displacements were calculated (Fig. 5b), and then projected on to the 

original 2D mesh.  A new set of simulated images (deforming Fig. 4) was generated and then used as 
input to the 2D MIE algorithm.   
2.5  Noninvasive In Vivo Experiments 

 In addition to the simulation experiments, a second camera and deformation system was 
constructed using a Sony XCD-X710CR CCD camera with a Schneider 12 mm lens and a circular 

a b
Fig. 4.  (a) Melanoma lesion, with (b) sample 
reconstruction. 
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Fig. 5. (a) Mesh with refinement in lesion area, (b) simulated compression of skin by device, and (c) depth 
variation (transect T is shown in (a)). 
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polarizing filter for the optics mounted over a crude spring-loaded standard set of pincers that were 
pressed against the skin surface and bound with commercial adhesive.  Digital images (800 x 600 
resolution) of a common nevus of palpable stiffness that was 2-3 mm in diameter and located on the volar 
aspect of the left forearm of a male volunteer were acquired in both relaxed and stretched states.  It was 
determined that the reflection and scattering of ambient fluorescent lighting interfered with this particular 
setup and affected the input image quality, so an artificial grid was imposed to counteract specularity.  

Images were acquired in the baseline and 
stretched state and given to the MIE algorithm.

3. RESULTS
Fig. 6 illustrates the reconstructions of 

the phantom membrane system using the linear 
and nonlinear models, respectively.  Fig. 7 reports 
how the objective function varies between the 
linear and nonlinear model reconstructions of Fig. 
6.  Fig. 8 demonstrates the dependence of 
resolving stiffness (3:1, 6:1, 12:1) on depth (1, 2, 
3 mm) for the 18 combinations (combinations of 
3 depths, 3 contrast ratios, and 2 subcutaneous 
layer thicknesses).  Table 2 reports an 

approximate contrast ratio of the lesion-to-bulk material for each of the cases shown in Fig. 8.  Fig 9. 
illustrates the results from the in vivo experiment conducted.  Fig. 9 shows (a) the nevus , (b) the finite 
element grid, and (c,d) reconstructed elasticity images.  Fig. 9c-d illustrate the effect of incorporating  
increasing degrees of a priori knowledge of the actual location and elasticity distribution into the 
algorithm.  Fig. 9c is a general elasticity reconstruction of the nevus with lesion-related initial guess, and 
Fig. 9d maintains the spatial prior of Fig. 9c for the entire duration of the reconstruction process. 

4. DISCUSSION 

With respect to Fig. 6, the most important features to note are a very subtle improvement in 
satisfying the inclusion contour, and the decrease in variability of the contrast in the geometric nonlinear 
reconstructions.  This is consistent with the behavior in Table 1 and indicates that the geometric nonlinear 
reconstruction is performing as predicted.  One thing to note is that if the membrane were a true Hookean 

Fig 7. Objective function difference between linear and 
nonlinear models over all stretches and resolutions. 

Stretch 1 Stretch 2

Stretch 3 Stretch 4

Stretch 1 Stretch 2

Stretch 3 Stretch 4 a

Stretch 1 Stretch 2

Stretch 3 Stretch 4

Stretch 1 Stretch 2

Stretch 3 Stretch 4 b
Fig 6.  (a) Linear Hookean reconstructions for each stretch state, and (b) the geometrically nonlinear Hookean 
reconstructions.  Contour shows inclusion border.
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nonlinear solid, the CR would be the 
same across all stretches, i.e. strain 
levels.  While the variability across 
levels was reduced between the 
linear and nonlinear models for 
strain, the data supports a more 
complex constitutive model for this 
phantom system.  Fig. 7 also demonstrates some consistency with the extension to a nonlinear model.  
Here we see that at the largest stretch values, the difference between the two models is highest with the 
nonlinear model outperforming the linear. 

With respect to Fig. 8, and Table 2, despite not reaching the expected contrast ratio values, each result 
localized the lesion and demonstrated sensitivity to depth and contrast.  With respect to contrast ratio, this 

a b

c d

a b

c d
Fig. 9.  (a) Dermoscopic scale interrogation (magenta border is about 
3 mm in diameter), (b) reconstruction mesh, (c) general elasticity 
reconstruction, (d) incorporation of lesion border as a priori
information. 

2mm 
SQ

1 mm 2 mm 3 mm 

3:1 2.12 2.55 2.79 
6:1 3.08 3.76 4.00 
12:1 4.11 4.71 5.15 

7mm 
SQ

1 mm 2 mm 3 mm 

3:1 1.93 2.27 2.34 
6:1 2.87 3.49 3.55 
12:1 4.03 4.28 4.53 

Table 2.  Lesion-to-bulk contrast ratio at 
each lesion depth (1mm, 2mm, 3mm) 
and target contrast level (3:1, 6:1, 12:1) 
for 2mm (top) and 7mm (bottom) 
subcutaneous thicknesses. 

1 6

3:1

6:1

12:1

1 mm 2 mm 3 mm 1 mm 2 mm 3 mm

2 mm subcutaneous 7 mm subcutaneous

1 6

3:1

6:1

12:1

1 mm 2 mm 3 mm 1 mm 2 mm 3 mm1 mm 2 mm 3 mm

2 mm subcutaneous 7 mm subcutaneous

Fig. 8.  3-D effects on elasticity images with varying lesion depth and subcutaneous layer depth.  Ratio on left 
shows actual contrast while colorbar shows reconstructed.  Fig. 4 shows the lesion contour. 
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simulation was more challenging than previous work.  The results indicate that varying subcutaneous 
thicknesses has a very modest effect in confounding lesion reconstructions for the contrast regime shown.  
Fig. 8 does suggest that at some contrast levels there may be overlap (e.g. a 3mm, 3:1 lesion with 2mm 
subcutaneous layer may be confused with a 1mm, 6:1 lesion with 7mm subcutaneous layer).  This could 
be potentially confounding if left in the absence of other information.  However, Horejsi et al. and Moller 
et al. 32, 33 do provide guidance for estimating the subcutaneous tissue thickness in a general population.  
Additionally, they use a relatively inexpensive optical device to make these measurements.  There is little 
doubt that using this a priori information would reduce variability in interpretation.  It is interesting to 
speculate that if a particular lesion type was of a known stiffness a priori then perhaps the reconstruction 
contrast could be used to estimate lesion depth.  Looking across the grids of a particular property contrast, 
there is a definitive change in the reconstruction as a function of depth.   

Fig. 9 demonstrates a preliminary attempt of applying the framework to an in vivo system.  
Considering there was very little control over this system and no ground truth was available, these results 
qualitatively confirm the potential utility of MIE in evaluating an area of skin with a region of differing 
elasticity.  While the results in Fig. 9 c,d are not completely satisfying at this time, it should be 
emphasized that the camera-system employed a coarse resolution, and the skin-to-device coupling system 
was extremely crude.  Given this somewhat ad-hoc experiment, the detection of any anomaly in the 
correct region is encouraging for this approach.  It was also interesting to note the increase in performance 
by adding the lesion extents to the information provided to the algorithm. 

5. CONCLUSIONS 

 The results from the experiments above demonstrate an ability to use the MIE framework within 
the dermoscopy setting.  Methodological concerns regarding the use of geometric nonlinear models, 
three-dimensional effects, and in vivo conditions are addressed.  The results indicate that while geometric 
nonlinearities do modestly affect reconstructions, nonlinear material models may be needed to correct for 
remaining discrepancies.  A modest improvement was shown using the geometric nonlinear model 
especially at large strain values which is consistent with the theoretical development.  The three-
dimensional effects of lesion depth and varying subcutaneous layer thicknesses are assessed.  Lesion 
depth does affect contrast ratio whereas subcutaneous layers affect the reconstructions to a significantly 
lesser degree.  Avenues to detect lesion depth in the presence of a prior knowledge of a lesion’s stiffness 
may have surgical implications.  Preliminary in vivo work suggests that lesion characterization is possible 
although specificity and sensitivity of the method await further study and will need a considerably more 
robust acquisition system. 
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ABSTRACT 

This work explores an inverse problem technique of extracting soft tissue elasticity information via nonrigid model-
based image registration. The algorithm uses the elastic properties of the tissue in a biomechanical model to achieve 
maximal similarity between image data acquired under different states of loading. A framework capable of handling 
fully three-dimensional models and image data has been recently developed utilizing parallel computing and iterative 
sparse matrix solvers. For this preliminary investigation, a series of simulation experiments with clinical image data of 
human breast are used to test the robustness of the algorithm to expected mis-estimation of displacement boundary 
conditions encountered in real-world situations. Three methods of automated point correspondence are also examined as 
means of generating boundary conditions for the algorithm. 

Keywords: elastography, computational modeling, inverse problem, non-rigid registration 
 

1. INTRODUCTION 
The characterization of the mechanical properties of tissue is an important potential source of information for detection 
and diagnosis of disease processes. For example, there is a long-standing clinical appreciation of evaluating tissue 
elasticity through palpation in the physical examination and correlating differences in stiffness with possible 
pathological states.  A minimally invasive methodology for analyzing tissue deformation through imaging and/or image 
processing techniques is a central goal of the field of elastography [1,11].  Application of such methods to the 
interrogation of the breast [2,3], skin [4-6], prostate [7], and other accessible organ systems is an active area of research.   

Many of the current elastography methods are founded in ultrasound (US) and magnetic resonance (MR) imaging and 
involve the estimation of induced displacements within the tissue of interest to infer the elasticity distribution.  We have 
recast the problem as a physically-constrained non-rigid image registration utilizing quasi-static deformation and image 
similarity metrics that reconstruct the spatial distribution of elasticity parameters.  This technique has been termed 
'modality-independent elastography’ (MIE) [8-10] because of its ability to handle native anatomical images from 
different sources with relatively simple modifications to the acquisition procedure.  To date, data from MR, X-ray 
computed tomography (CT), and digital photography have been used to drive the algorithm. In addition to the necessary 
preparation and effort involved in gathering images, the other major input to this reconstruction method is the 
delineation of boundary conditions on the region of interest.  Because this process currently involves varying levels of 
manual interaction, there is a need to develop a protocol that is both effective and mostly automated for determining 
point correspondences. The objectives of this work are to test the effects of degradation in input data quality on the end 
reconstruction and examine candidate methods for generation of displacement boundary conditions. This is done in the 
context of evaluating the robustness of a newly realized three-dimensional version of MIE by performing simulation 
experiments with randomized noise processes and comparing the fidelity of reconstructions resulting from boundary 
conditions generated by three different techniques of determining surface point correspondence.  

2. METHODS 
2.1 Elastographic reconstruction framework 

The conceptual framework for our elastographic reconstruction has been previously described in [6,8-10]. In brief, an 
image of a tissue of interest (source) is deformed by a biomechanical computer model and compared against an acquired 
image of the same tissue in a mechanically loaded state (target). Iterative updates of elasticity parameters to the model 
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are performed until a suitable match in intramodal image similarity is achieved in a least squares manner to satisfy a 
non-linear optimization scheme. This process can be classified as an inverse problem, with model-based deformation of 
the source image representing the forward problem. The three major components of the algorithm are the model, image 
comparison, and optimization, each of which is described in more detail below. 

The partial differential equation that expresses a state of mechanical equilibrium can be written as [12]: 

0=⋅∇ σ  (1) 

   
where σ is the Cartesian stress tensor.  We have elected to model the constitutive tissue behavior using Hooke’s Law of 
linear elasticity, which states that the strain is proportional to the applied stress, and assume that materials are isotropic 
and incompressible in nature.  This leads to the formulation of Cauchy’s Law as 

 (2) 

 

which describes the constitutive relationship between stress and strain in terms of the elasticity parameters E (Young’s 

modulus) and ν (Poisson’s ratio).  The shear modulus G is defined as
)1(2 ν+

E . 

A finite element (FE) representation of the model is constructed from the source image and assigned appropriate 
boundary conditions based on estimated displacement or stress.  The standard Galerkin method of weighted residuals 
[13] is used to construct and solve the system, which yields a set of displacements that are used to deform the source 
image. This model-deformed image is then compared to the target using an intensity-based image similarity calculated 
for a series of voxel groupings determined by a downsampling of the image set overlap.  The correlation coefficient 
(CC) [14] is the method of choice, as it has empirically demonstrated superior performance over other metrics such as 
the sum of squared differences and normalized mutual information. 

The elasticity parameter optimization can be written as the minimization of the least squares error objective function  

2
ESTTRUE SS −=Ψ  (3) 

where STRUE is the set of similarity values achieved when comparing the target image to itself, SEST is the similarity 
between the model-deformed source and the target images using current estimates of the elastic modulus distribution, 
and |•| denotes the vector L2 norm. Note that by definition, STRUE for CC has a constant value of 1. Using a Levenberg-
Marquardt approach, the residual form of equation (3) becomes   

 

[ ]{ } [ ]{ }ESTTRUE
TT SSJEIJJ −=∆+ α  (4) 
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where J = ∂SEST/∂E is the Jacobian matrix and the regularization parameter α is determined using the methods described 
in [15].  Modulus values are updated by ∆E until an error tolerance is reached or a maximum number of iterations have 
been completed. Spatial averaging of elasticity values in the model and solution relaxation between iterations are also 
utilized to improve the stability of the optimization.  

It should be noted that the size of the Jacobian matrix is dependent on the number of material properties to be 
reconstructed, with each column requiring a forward solve of the FE model. For the general lesion detection problem, a 
fine discretization of the mesh requires many solutions such that the building of this matrix consumes a considerable 
portion of computational resources.  This fact is exacerbated with the use of three-dimensional data and necessitates a 
parallelized system.  Recent work using the Portable Extensible Toolkit for Scientific Computation (PETSc) toolkit 
[16,17] has provided the necessary coding base for interfacing sparse matrix system solvers with a C/C++ optimization 
framework in order to supersede the original MATLAB/FORTRAN framework. This new version is designed to scale 
readily between the complexity of the model and the number of processors available; it has been tested on a 
homogeneous cluster of ten processors, with further active development taking place in conjunction with the Vanderbilt 
ACCRE project, which houses hundreds of CPUs.   

2.2 Simulation experiment setup 

A CT volume of a human breast, obtained from UC-Davis Dept. of Radiology, was used as the source image (256 x 256 
x 130, 0.6mm x 0.6mm x 0.6mm voxel spacing) for the remainder of this work. The surface of the breast was segmented 
(ANALYZE 6.0, Mayo Clinc, Rochester, MN) to create a three-dimensional mesh composed of 39,013 nodes connected 
as 214,163 tetrahedral elements. In order to ensure initial data fidelity for reconstruction experiments, an idealized target 
image volume and gold standard boundary condition set were created.  A 2-cm spherical tumor was implanted in the 
center of the mesh by assigning a stiff modulus value to the member elements that was six times higher than the 
surrounding material [18]. Tissue deformation from the inflation of a rectangular air bladder against the lateral surface of 
the breast was numerically simulated to qualitatively match observed mechanically loading of an existing device on a 
breast-mimicking phantom of polyvinyl alcohol cryogel. The stress distribution over a rectangular contact area was 
modeled as the cross-section of a Gaussian pressure field with its maximum value located at the center of the bladder; 
the base of the breast was fixed in place as if pinned to the chest wall.  The deformation field throughout the domain was 
calculated using a direct forward solve of the finite element model and then applied to the intensity field of the source 
image to create a target volume.  Displacements at the surface nodes were used to make a final description comprised of 
all Type I (Dirichlet) boundary conditions.  Figure 1 below illustrates the setup of the data used.  

All reconstructions were performed using a priori knowledge of the location and size of the inclusion in order to limit 
the scope of the problem (e.g. the expense of the Jacobian matrix) to a two-material discrimination of relative stiffness 
(elastic contrast). Having a defined physical model and synthetic image comparison also allows for examination of the 
optimization behavior separately from the other MIE components in order to best evaluate the effect of input 
inaccuracies on the final elasticity distribution. The reconstruction algorithm begins by assigning a homogeneous 
elasticity distribution, with Poisson’s ratio held constant at ν = 0.485 to represent a nearly incompressible material.  For 
this data set, 733 similarity zones were discretized from the target image volume. 

 

 
Figure 1.  Surface renderings of CT breast volume used in MIE simulation experiments. From left to right: source image, 

finite element mesh, and target image with deformation created by presumed inflation of an air bladder.  
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2.3 Testing robustness of the algorithm 

The current method of selecting boundary conditions as derived from experiences in 2D work requires manual 
interaction to guide or correct point correspondence for every surface node. Assuming that visible markers are available 
in an image, but that an input device (e.g. a mouse) is needed to identify the specific coordinates, this introduces an 
operator-dependent noise process in localizing any given point. The cumulative effect of these inaccuracies is 
propagated from the model to the image deformation and then the similarity measurements. For a given reconstruction 
experiment, the gold standard boundary condition set was systematically disrupted by adding a Gaussian randomized 
vector of a particular length (0.1, 0.2, 0.5, 1.0 or 2.0 voxel units). Figure 2 shows an example of the distortion caused by 
the applied noise.  

 
Figure 2.  Example of distortion due to additive randomized error. The gold standard boundary conditions used to generate 

a controlled deformation produce the mesh shown on the left. For effect, the 2.0 voxel unit noise is show on the right.  

 

2.4 Testing automated boundary condition generating methods 

For this work, three methods of surface registration and point correspondence were considered for a more automated 
method of determining boundary conditions for the reconstruction algorithm. Two are derived from surface matching of 
potential energy distributions, and the other is a free-form warping.  

If the flow of a substance over undeformed and deformed breast surfaces is taken to be a conserved process, then 
correspondence can be achieved by matching the same energy deposition between the source and target, that is, the 
equivalent level sets. In a physical sense, Laplace’s equation can be used to describe this type of movement analogously 
to steady-state heat distribution: 

 02 =Φ∇  (5) 
 

where Φ would represent the temperature over a given region.  Similarly, the diffusion equation describes the change in 
concentration or density of a material over time on a region: 

 Φ∇=
∂
Φ∂ 2α
t

 (6) 

 

where α is the diffusivity constant.  

These partial differential equations were used to calculate an energy distribution from the nipple area to the chest wall 
over the surface of a breast.  Isocontours of particular energy values were then extracted from each surface to form a set 
of connected points.  The symmetric closest point method described by [19] was used to determine a displacement field 
from which point correspondence at boundary nodes could be interpolated.  
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The third method involves thin-plate spline interpolation [20] to determine point correspondence. This was done to 
consider a widely-used method of non-rigid transform that can take advantage of fiducial information that should be 
present in future real-world data acquisition. The use of physical markers to track breast surface displacement during a 
deformation also defines a set of control points would allow the displacement boundary conditions for MIE to be simply 
interpolated from the local warping.  In these simulation experiments, 40 surface nodes of known correspondence in 
each of the image volumes (due to the controlled deformation) served as fiducials.   

2.5 Evaluation of reconstructions 

Evaluation of the reconstruction results is performed by calculating the ratio of the elasticity of the inclusion to the rest 
of the breast for the distribution that yields the minimal objective function value over the course of optimization. The 
robustness of the MIE algorithm was tested with four trials at each of the magnitudes of randomized vectors (described 
above in Section 2.3), and the reconstruction results were averaged to determine a trend and possible threshold of noise 
tolerance for the algorithm. 

For the automated boundary condition generation methods, a forward mapping of the objective function space was 
calculated to determine a theoretical optimum to the reconstruction.  This was done by calculating the similarity values 
for model-based image deformations created by adjusting the elasticity contrast of the inclusion over a range of 0.5:1 to 
30:1. An interpolating curve was fit and the minimum objective function value and associated elasticity contrast were 
extracted.   

 

3. RESULTS 
 

3.1 Robustness of algorithm to boundary condition noise 

The following tables summarize the effects of additive noise of a particular magnitude to the gold standard boundary 
condition set.  As the magnitude of the applied randomized vectors increased, a dramatic increase in the minimum 
objective function value is observed. Additionally, changes in the reconstructed elasticity contrast indicate that a cutoff 
exists in the ability of the algorithm to achieve a successful result (recall that the known correct ratio is 6:1) for 
disruption by vectors of length 0.5 voxel units or higher.  

 

Table 1.  Effect of applied random boundary condition noise on objective function space and reconstructed elasticity 
contrast ratio. 

Randomized 
vector magnitude 

(voxel units) 

Mean optimal 
objective function 

value 

Mean optimal 
elasticity contrast 

value 

0.1 2.85 ± 0.0382 5.62 ± 0.421 

0.2 10.1 ± 0.367 5.70 ± 0.588 

0.5 60.1 ± 4.19 2.36 ± 0.393 

1.0 80.2 ± 0.561 2.47 ± 0.266 

2.0 104 ± 3.42 2.17 ± 0.422 
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3.2 Use of automated point correspondence  

Figure 3 depicts the deformation fields found by the various automated methods which were converted into a boundary 
condition sets and run through the reconstruction algorithm. Qualitatively, the displacements found by the diffusion 
method are quite different from the gold standard set, while the results from the solution of Laplace’s equation and the 
thin-plate spline interpolation appear to be more satisfactory. The mean target registration error of the three methods 
confirms this with the spline having the best performance (0.26 mm), the Laplace method next (1.0 mm), and the 
diffusion method being the worst (2.0 mm).  Inspection of Figure 4 further demonstrates that the imposition of an inexact 
boundary condition set on the model has a distinct effect on the optimization by shifting the minimum value to a 
different position. A comparison of the fit with the reconstruction in both objective function value and elasticity contrast 
is provided in Table 3 below and indicates that the algorithm is mostly in agreement with the predicted values for the 
Laplace and thin-plate spline methods but not as well for the diffusion method. 

 

 

 
 

Figure 3.   Three candidate automated methods for MIE boundary condition generation. Top row, from left to right: surface 
deformations calculated from diffusion energy matching, Laplace solution energy, and thin-plate spline interpolation.  
Bottom row: target registration error (TRE) distribution for each method when compared against the gold standard of 
known correspondence. The diffusion-based mesh is both qualitatively and quantitatively the worst performer. The 
Laplace solution appears to capture the shape of the bladder indentation more precisely, but the thin-plate spline has the 
best overall accuracy in determining point correspondence.  
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Figure 4.  Mappings of objective function value vs. elasticity contrast ratio (tumor:breast) as affected by the boundary 

condition sets generated by different automated methods of surface point correspondence. The minimum value of each 
curve corresponds to the optimal elasticity contrast that can be achieved by the algorithm when constrained by the 
inaccuracies of the methods: (a) diffusion, (b) Laplace, and (c) thin-plate spline interpolations. 

 

 

 

Table 3.   Comparison of automated point correspondence methods on MIE reconstruction quality. Predicted values are 
found from the minimum point of the curves shown in Figure 4. 

Method Predicted minimum 
objective function 

value 

Reconstructed 
minimum objective 

function value 

Predicted 
optimal elasticity 

contrast 

Reconstructed 
optimal elasticity 

contrast 

Diffusion 58.5 58.8 30.0 12.6 

Laplace 5.59 5.59 9.55 10.3 

Thin-plate spline 12.3 12.3 5.55 5.66 
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4. DISCUSSION 
The results of the boundary condition noise experiment are interesting because they indicate that improper localization 
of boundary points greater than or equal to 0.5 units of voxel spacing can introduce significant error to the reconstruction 
process and impair its ability to characterize the underlying elasticity distribution. This is a similar result to prior work 
done in two-dimensional systems in which successful reconstructions correlated to boundary condition selection error 
limited to half a pixel length [21]. It also confirms that randomizing the vectors is a significant challenge to the algorithm 
because it introduces highly non-physical deformations that cause backlash in the finite element mesh and other 
numerical anomalies.  

The implausibility of performing manual selection on all 6,319 boundary nodes underscores the importance of finding an 
automated method for determining point correspondences, especially at less than 0.5 voxel units of error.  In these 
simulation experiments, energy matching from the solutions of the diffusion and Laplace equations yield boundary 
condition sets that are inadequate for reconstructing a proper elasticity contrast.  This can be partly explained because the 
mean errors of those surface registration techniques (as compared to the gold standard) are approximately 3.3 and 1.7 
voxel units, respectively, which based on the randomized trials were magnitudes too large for the algorithm to handle. 
The diffusion-based boundary conditions also proved more difficult to obtain a stable solution for in the model, which 
probably contributed to the mismatch in reconstructed elasticity contrast. However, the results obtained from 
reconstructions using the thin-plate spline method are encouraging because the mean error was 0.43 voxel units.  The 
reconstruction behavior in that case was consistent with the predicted objective function space and the optimal elasticity 
contrast was found to be within 6% of the true value. This preliminary result appears to identify the use of thin-plate 
spline interpolation as a strong candidate for generating boundary conditions for MIE. The use of 40 control points is 
also seen as a reasonable choice for data acquisition and processing in order to capture the extent of expected 
deformation processes.  

 

5. CONCLUSIONS 
In this work, we have demonstrated the effects of inaccuracies in boundary condition determination on an elastography 
method that maximizes the similarity between images of a tissue of interest acquired under two different states of 
mechanical loading.  In order to characterize the robustness of the current version of this method, which has been 
updated to handle three-dimensional data in a parallelized scheme, randomized vectors were applied to distort a gold 
standard boundary condition set.  The results were used to determine a threshold of accuracy needed in order to still 
achieve an accurate reconstruction. In order to streamline the pre-processing involved in the algorithm, three methods of 
automated point correspondence were evaluated.  The success of these methods correlated with their mean error (relative 
to the true displacements) meeting the putative cutoff, and initial results indicate that established techniques such as thin-
plate splines hold promise for generating boundary conditions. 
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ABSTRACT 

Recent advances in breast cancer imaging have generated new ways to characterize the disease.  Many analysis 
techniques require a method for determining correspondence between a pendant breast surface before and after a 
deformation.  In this paper, an automated point correspondence method that uses the surface Laplacian or the diffusion 
equation coupled to an isocontour matching and interpolation scheme are presented.  This method is compared to a TPS 
interpolation of surface displacements tracked by fiducial markers.  The correspondence methods are tested on two 
realistic finite element simulations of a breast deformation and on a breast phantom.  The Laplace correspondence 
method resulted in a mean TRE ranging from 1.0 to 7.7 mm for deformations ranging from 13 to 33 mm, outperforming 
the diffusion method.  The TPS method, in part because it utilizes fiducial information, performed better than the 
Laplace method, with mean TRE ranging from 0.3 to 1.9 mm for the same range of deformations.  The Laplace and TPS 
methods have the potential to be used by analyses requiring point correspondence between deforming surfaces. 

Keywords: Registration, non-rigid, breast, deformation, correspondence, surface Laplacian, diffusion, finite element, 
thin-plate spline, interpolation 
 

1. INTRODUCTION 
As breast cancer is estimated to kill over 40,000 women and be diagnosed in more than 178,000 in 2007 [1], the 
detection and treatment of breast cancer is an important area of scientific research.  Many novel techniques to aid in 
tumor detection are being developed that exploit the difference in physical properties between healthy and cancerous 
tissue.  Some of these techniques measure the optical, electrical, or elastic properties of tissue, including near-infrared 
tomography [6], electrical impendence tomography (EIT) [7],  ultrasound elastography (USE) [8], magnetic resonance 
elastography (MRE) [9], and in particular, modality-independent elastography (MIE) [2,3].   
 
MIE is a reconstruction algorithm for elasticity imaging that can be used for detecting breast tumors.  It involves 
imaging a pendent breast before and after a compression and using these images to reconstruct the elastic properties of 
the tissue using a nonlinear optimization framework, computer models of soft-tissue deformation, and standard measures 
of image similarity.  Unique to MIE is its ability to utilize images from any modality such as MRI or CT, as well as its 
usage of image similarity measures that make direct displacement measurements unnecessary. 
 
One requirement of MIE is an automated method of finding point correspondence between the pendent breast surfaces 
before and after compression, needed to specify the boundary conditions for the elasticity model.  As the breast is 
composed of soft tissue that deforms non-rigidly, standard rigid registration methods cannot be applied.  Previous work 
in non-rigid registration includes using splines and FEM models [11], as well as point-based methods such as the 
symmetric closest point (SCP) algorithm [10].   
 
In this paper, two automated methods that use the Laplace and diffusion equations to establish point correspondence 
between deformed breast surfaces were developed and compared to a standard thin-plate spline (TPS) interpolation 
method [4].   
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2. METHODOLOGY 
2.1 Laplace and diffusion methods of finding point correspondence 

A major investigative task of this work was to evaluate whether the energy distributions modeled by a partial differential 
equation (PDE) over an undeformed (source) surface and a deformed (target) surface can be used to find the 
correspondence between the two surfaces.  In this method, the Laplace and diffusion equations were independently 
solved over the source and target meshes using the finite element method (FEM).  Laplace’s equation is most commonly 
used to describe potential flow problems such as in thermal, fluid, and electrostatic systems and is given by 
 
  (1) 

 
where Φ represents the potential and σ describes the spatially varying conductivity.  The diffusion equation which allows 
a time-varying potential is given by 
 
  (2) 
 
where Φ represents the potential and α is the diffusion coefficient.  Let Φsource refer to the solution to the Laplace or 
diffusion equation over the source surface, and let Φtarget refer to the solution over the target.  The basic premise is that 
the potential field distributed over the source and target surfaces as calculated by the Laplace or diffusion equation will 
provide information about the correspondence between the source and target surfaces.  
  
To solve the equations, Dirichlet boundary conditions were set to simulate potential flow from the nipple area to the 
chest wall over the surface of a pendent breast (specifically, nodes in the nipple and chestwall area were given boundary 
values of 1 and 0, respectively).  To solve equation 1, a Galerkin finite element method is used whereby the equations 
are expressed along the surface orientation (σ=1).   To solve equation 2, a similar scheme was used for handling the 
spatial component of the PDE and a fully implicit backwards Euler scheme was used for time-stepping.  In the case of 
equation 2, a no-flux condition was prescribed at the chest wall, and the potential field was allowed to propagate from 
the nipple (α=1).  In this calculation, time-stepping was stopped once the potential field reached the chest wall. 
 
After the Laplace or diffusion equation was solved over the source and target surfaces, the solutions were used to 
establish correspondence between the source and target nodes.   This involved two distinct processes: finding 
correspondence between isocontours of Φsource and  Φtarget  and then “interpolating” that correspondence back to every 
source node on the mesh.  In the first step, isocontours were extracted from  Φsource and Φtarget for a set of selected 
isovalues.  The correspondence between the source and target isocontours was determined by aligning the contours by 
their centroids and using the SCP algorithm.  In the second step, the displacement vectors at the source isocontours were 
interpolated to all source nodes using a thin-plate spline.  The final correspondence was found by adding these 
displacements to the source nodes to get the location of the corresponding point on the target surface. 
 
The method can be summarized in the following steps: 

1. Obtain the undeformed source mesh and deformed target mesh that define a breast surface before and after 
deformation. 

2. Assign boundary conditions at nipple and/or chest wall nodes. 
3. Solve PDE (diffusion or Laplace) over the source and target meshes using FEM. 
4. Extract isocontours on the source and target surfaces. 
5. Determine point correspondence between source and target isocontours using SCP. 
6. Interpolate displacements at source isocontours to all source nodes. 

 
2.2 Using thin-plate spline interpolation to find point correspondence 

One advantage of the PDE-based correspondence methods is that they do not explicitly rely on external markers to 
constrain the matching process.  However, when real-world data is acquired, fiducials are anticipated to be available.  
Therefore, TPS interpolation is another method that can be used to find point correspondence [4].  Although there are 
many different methods for interpolation, including polynomial splines and B-splines [11], TPS interpolation was chosen 
in part because it does not require a regular grid, the effects of changing a control point are localized, and it is a standard 
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method that has been successfully used in many non-rigid registration applications.   In the simulation experiments 
described below, TPS interpolation was used to find point correspondence by choosing 40 points on the source surface to 
act as fiducials.  The known displacements at these nodes were then interpolated to all surface nodes using TPS.   
 
The Laplace, diffusion, and TPS methods for finding point correspondence described above were tested on two 
simulation data sets and a breast phantom.   
 

2.3 Simulation experiments 

To perform a controlled test of the methods described above on a breast-shaped surface, a CT image volume of a 
pendant breast (courtesy of the Dept. of Radiology, University of California-Davis) was segmented to create a source 
surface consisting of 6,313 points.  Two types of deformations were simulated by assuming different contact geometries 
of an air bladder being inflated against the breast surface.  Circular and rectangular cross-sectional areas of a Gaussian 
stress distribution positioned along the lateral aspect of the breast were used to define Type 2 boundary conditions for a 
finite element-based deformation; the base was made to be affixed to the chest wall.  The displacement solutions, based 
on a three-dimensional linear elastic model of a Hookean solid, were applied to create the target surfaces for the two 
simulations (Figure 1). 
 

a b c 
Figure 1. Breast surface point sets.  (a) Source surface extracted from CT volume of a breast.  (b) Target surface 

generated from first simulation using circular cross-section of a Gaussian stress distribution. (c) Target 
surface generated from second simulation using rectangular cross-section of a Gaussian stress 
distribution.  The correspondence between the source and target surfaces was determined using the 
Laplace, diffusion, and TPS methods. 

 
2.4 Phantom experiments 

A breast phantom was constructed to test the point correspondence methods with real-world data.  The phantom was 
fabricated from an 8% w/v solution of polyvinyl alcohol that was frozen in the upper half of a 2-liter beverage container 
for 16 hours.  After 8 hours of thawing, thirty-four 1-mm stainless steel ball bearings were implanted directly under the 
surface of the resulting cryogel to act as fiducials.   
 
The phantom was then imaged inside a custom-built rectangular chamber designed to deliver compression by means of 
an air bladder placed against the surface of the phantom (Figure 2).  CT images (512 x 512 x 174, 0.54 x 0.54 x 1 mm 
voxel spacing) were acquired with the phantom at three different states of mechanical deformation (undeformed, 50% of 
maximum bladder pressure, and full inflation).  Triangular surface meshes were obtained by semi-automatic 
segmentation of the image volumes using the surface extraction tools in ANALYZE 6.0 (Mayo Clinic, Rochester, MN), 
and the coordinates of the fiducial centroids were localized.  These meshes contained approximately 8127, 6777, and 
8260 nodes, respectively. 
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Figure 2.  Experimental system for image data acquisition. A polyvinyl alcohol cryogel is placed within a 

Plexiglas chamber with its surfaces held in place against the walls. Compression is delivered through an 
air bladder (arrow) inflated manually through a bulb adapted from a standard sphygmomanometer. 

 
The Laplace, diffusion, and TPS methods were tested on the phantom surface meshes.  For the TPS method, 30 of the 
fiducials was used in the interpolation and the four remaining fiducials were reserved for validation.  The fiducials used 
in interpolation and validation were selected such that the distribution for both groups over the surface was roughly even 
and included the deformed region.  
 
2.5 Validation 

In order to assess the accuracy of the simulation and phantom experiments, the target registration error (TRE) was 
calculated.  The TRE measures the error between the correspondence determined by the registration method and the true 
correspondence [11].    For the simulation experiments, the TRE was calculated as the Euclidean distance between the 
corresponding target points determined by the Laplace, diffusion, or TPS method and the true target points.  Since the 
true correspondence between the source and target surfaces was known, the TRE was calculated for each source node, 
and the average and maximum were reported.  For the phantom experiment, the TRE was calculated using the centroids 
of the bead fiducials implanted directly under the phantom surface.  Since the “gold standard” correspondence was 
known only at the fiducials, the TRE could only be calculated at these locations. 
 
In addition, since one crucial step in both the Laplace and diffusion methods is to find point correspondence between the 
source and target isocontours (step 6 of algorithm summary), we evaluated how well the SCP algorithm performed in 
this step for the simulation data.  To accomplish this, the SCP method was given a set of source isocontours and their 
true corresponding target contours, and the error (the Euclidean distance between the true target point and the 
corresponding target point determined by SCP) was calculated. 

3. RESULTS 
3.1 Simulation 1 (circular deformation source) 

The Laplace and diffusion equations were solved over the surfaces generated from simulation 1 (cranial-caudal 
deformation source with maximum displacement of 33 mm) to find point correspondence between the source and target 
breast surfaces.  For comparison, TPS interpolation using 40 simulated fiducials was also used to find point 
correspondence.  The accuracy of each method was assessed by calculating the TRE at each surface node (Figure 3). 
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The results (Table 1) indicated that the Laplace method performed more accurately overall than the diffusion method; 
however, the area with the highest amount of error differed.  When the Laplace method was used, the deformed region 
had the highest error, whereas when the diffusion method was used, the area farthest from the diffusion source had the 
highest error.  (In this case, since the diffusion source was located in the nipple area, the highest error occurred in the 
chest wall region.)  The TPS interpolation had the lowest error overall, and the error distribution over the surface was 
related to the locations of the simulated fiducials. 

 
(a) 

 
(b) 

 
(c) 

TRE (mm) 

 

Figure 3.  TRE displayed for breast simulation 1 (circular deformation source) when (a) Laplace equation, 
(b) diffusion equation, and (c) TPS interpolation were used to find point correspondence.  The TPS 
method resulted in the lowest error overall (mean TRE 0.4 mm), followed by the Laplace method 
(mean TRE 2.3 mm) and diffusion method (max TRE 4.5 mm).  The highest TRE is found in the 
deformed region when the Laplace method is used and in the base when the diffusion method is 
used. 

 
The results given above pertain to a simulated compression with a maximum displacement of approximately 33 mm.  
Since this amount of compression may be larger than is needed for many applications and may introduce other unwanted 
effects for MIE due to non-linear elastic behavior, the point correspondence methods were also tested for lesser amounts 
of compression.  The TRE for different amounts of compression when the Laplace method was used to find point 
correspondence is shown in Figure 4.  The TRE appears to increase linearly with respect to increasing compression. 
 
The mean and maximum error for the isocontour point correspondence determined by the SCP algorithm (detailed in 
methods section) was calculated (Figure 5).  The isocontour correspondence given by the SCP algorithm had a 
maximum error of about 5 mm for the maximum compression of 33 m. 
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Figure 2. Maximum TRE (solid line) and mean TRE (dotted line) when the Laplace method was used to find point 

correspondence between the source and target surfaces at different levels of compression.  A deformation 
of 100% indicates a maximum displacement of approximately 33 mm.  The TRE seems to increase 
linearly with respect to the amount of deformation 

 
 

 
Figure 5. Evaluation of the accuracy of the SCP method used to find isocontour correspondence.  The mean error of 

the SCP method (dotted line) is compared to the mean error of the Laplace method (solid line) when SCP 
method was used to find isoncontour correspondence for simulation 1 data at different levels of 
compression.  (A deformation of 100% indicates a maximum displacement of approximately 33mm.)   
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3.2 Simulation 2 (rectangular deformation source) 

When the Laplace, diffusion, and TPS interpolation methods were used to find point correspondence between the breast 
surfaces generated by simulation 2 (a more realistic simulation using a rectangular deformation source with a maximum 
displacement of 13 mm), the results (Figure 6) were very similar to those from simulation 1.  However, the TRE for all 
three methods (Table 1) was slightly lower, possibly due to the lower degree of compression simulated.   
 

 
(a) 

 
(b) 

 
(c) 

TRE (mm) 

 

Figure 3. TRE displayed for breast simulation 2 (rectangular deformation source) when (a) Laplace equation, 
(b) diffusion equation, and (c) TPS interpolation were used to find point correspondence.  The TPS 
method resulted in the lowest error overall (mean TRE 0.3 mm), followed by the Laplace method 
(mean TRE 1.0 mm) and diffusion method (mean TRE 2.1 mm).  The results are similar to that of 
simulation 1 
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3.3 Phantom 

The Laplace and diffusion methods were used to determine point correspondence between the noncompressed and 
compressed surfaces of a breast phantom.  The results were validated by calculating the TRE at 34 fiducials located 
directly below the surface of the phantom.  For comparison, TPS was used to interpolate the displacements of 30 
fiducials to all surface nodes, and the TRE was calculated using the 4 remaining fiducials.   
 
The results for a 50 and 100% compression (with a maximum displacements of about 20mm and 36 mm, respectively) 
are shown in Table 2.  As in the simulations, the Laplace method performed better overall than the diffusion method and 
had lower TRE.  The TRE for the TPS interpolation was lower than that for the Laplace and diffusion methods, but 
varied with the number and locations of fiducials used in the interpolation.  
 
 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Breast phantom surfaces (a) before compression, (b) at 50% compression with maximum 
displacement of .020 m, and (c) at 100% compression with maximum displacement of .036 m.)  Lines 
indicate isocontours at different values of k.  Black nodes at the nipple and base indicate the nodes 
assigned boundary values.   
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Table 1. TRE for different point correspondence methods tested on breast surfaces generated from simulation 1 
(point deformation source with max displacement of 33 mm) and simulation 2 (rectangular 
deformation source with max displacement of 13 mm) breast surfaces.  The Laplace method 
outperformed the diffusion method, while the TPS method performed best of all.   

 
Simulation 1  Simulation 2  

Max TRE (mm) Mean TRE (mm) Max TRE (mm) Mean TRE (mm) 
Laplace 14.6 2.3 4.6 1.0 
Diffusion 24.2 4.5 10.3 2.1 
TPS (40 fiducials) 7.6 0.4 2.6 0.3 

 
 

Table 2. TRE for different point correspondence methods tested on breast phantom at approximately 50% and 
100% compression, with max displacements of 20 and 36 mm, respectively.  The Laplace method 
outperformed the diffusion method, while the TPS method performed best of all. 

 
50%  Compression 100% Compression  

Max TRE (mm) Mean TRE (mm) Max TRE (mm) Mean TRE (mm) 
Laplace 8.1 3.5 16.4 7.7 
Diffusion 11.9 3.9 19.4 7.9 
TPS * 1.5 1.1 2.6 1.9 

* TPS interpolation using 30 fiducials; 4 fiducials were used to calculate TRE. 
 

4. DISCUSSION 
Of the three registration methods evaluated, the TPS method consistently outperformed the Laplace and diffusion 
methods and had the lowest error for both the simulation and phantom experiments.   However, it is important to note 
that a comparison of the PDE-based methods and the TPS method is not entirely fair since the TPS method relies on 
fiducial information that the Laplace and diffusion methods do not require.  The performance of the TPS method is 
dependent on both the number and placement of these fiducials.  These results indicate that 30- 40 fiducials with an even 
distribution over the surface should be sufficient to register surfaces (with 13-33 mm deformations) with mean TRE 
ranging from 0.3 to 1.9 mm.  Although further studies are needed to determine the optimal number and placement of 
fiducials, experience suggests that increasing the number of fiducials in the areas with greatest deformation increases 
registration accuracy, and conversely, lowering the number of fiducials in those areas causes a significant decrease in 
accuracy. 
 
The results indicate that the Laplace method is a useable surface registration method.  Although the Laplace method did 
not perform as accurately as the TPS method, it has the advantage of not requiring fiducial information.  However, one 
of the challenges of the Laplace method is determining the regions to which boundary conditions are assigned.  Accurate 
selection of these regions is important because the implicit correspondence between these regions is used by the Laplace 
equation to obtain the correspondence for the rest of the surface.  For these studies, the nipple region and the chest wall 
boundary regions were selected manually.  Further studies may be needed to find a method to automate the selection of 
the boundary regions and to evaluate how error in the selection of these regions affects the final registration error. 
 
Although the diffusion method does have certain advantages over the Laplace and TPS registration methods, several 
problems prevent it from becoming a viable surface registration technique.  The advantages of the diffusion method are 
that the correspondence near to the diffusion source (in this case, the nipple) is relatively accurate.  In addition, the 
diffusion method only requires boundary conditions to be set in one region (in this case, the nipple), unlike the Laplace 
method, which requires boundary conditions at two regions (nipple and chest wall base), and the TPS method, which 
requires multiple points of constraint (at 34 fiducials). 
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However, the diffusion method does not appear to be a very useable surface registration method for the following 
reasons: the results indicate a substantial amount of error, the registration and resulting error are highly dependent on the 
diffusion parameters chosen (time step and final time in particular), and the diffusion parameters must be manually 
adjusted for each different surface mesh since there is no automated method to find the optimal diffusion parameters.  
Since the diffusion described by the PDE is by definition a non steady-state process, an optimal registration requires that 
the diffusion front should travel over the entire surface between the nipple and base and stop at the base in order to 
assure correspondence for as much as the surface as possible.  If the parameters are chosen such that the diffusion front 
does not reach the base, the correspondence for the regions not reached by the diffusion front cannot be constrained and 
must be interpolated from the displacements of the surrounding regions.  Conversely, if the diffusion front travels for too 
long a time, the solution over the surface approaches saturation, resulting in a flat gradient and lack of isocontours from 
which to establish correspondence.  Various modifications to the diffusion method employing curvature information and 
using different diffusion coefficients were tested, but none was very successful.  Therefore, the sensitivity of the 
diffusion method to parameters and substantial amount of error may prevent the diffusion method from being a viable 
surface registration method.   
 
The TRE measured for each registration technique is not only dependent on the factors described above, but also on the 
amount of deformation of the target surface.  The results suggest that the TRE increases roughly linearly with the 
amount of deformation.  Using the simulation and phantom data presented here, one may be able to estimate the range of 
error expected when one of the described methods is used to register breast surfaces with a particular amount of 
compression.  Conversely, the maximum amount of compression that will yield a registration within a given error bound 
can be roughly estimated.  For the purposes of MIE, realistic compressions will be in the range of 1-2 cm. 
 
Another factor related to the amount of compression is the distribution of TRE over the surface.  The TRE was not 
evenly distributed; rather, the TRE in the areas of greatest deformation tended to be higher than the TRE elsewhere.  
Therefore, the mean TRE is not necessarily the best measure of the TRE over the surface; the max TRE may reflect the 
error in the deformed regions more accurately.  
 
In addition to the evaluation of the three registration methods, the performance of the SCP algorithm was evaluated since 
the matching of the isocontours extracted from the source and target surface is a crucial step of the PDE-based 
registration methods.  The results indicate that the amount of error the SCP algorithm contributes to the Laplace and 
diffusion methods is relatively small when compared to the total TRE (Figure 2). 
 
In comparsion to previous studies, the Laplace method outperformed the modified SCP method implemented by Schuler, 
et al. The data generated by first simulation described in this paper was also used to test the modified SCP method, and 
whereas the Laplace method had a maximum error of 14.6 mm for a deformation of 33 mm, the modified SCP method 
had a maximum error of 27.8 mm [5]. 
 
MIE is one application that may use the registration methods described in this paper, in this case to determine boundary 
conditions for its elasticity model.  Preliminary studies indicate that TPS is the most viable registration method, the error 
of which is within the bounds required for a successful elasticity reconstruction (approximately 0.3 mm).  The mean 
error for the Laplace registration method exceeds MIE’s error bounds, and although the target boundary conditions 
produced by the Laplace method resulted in a viable mesh, the resulting elasticity reconstruction contained a 
considerable amount of error. The diffusion method could not be used in conjunction with MIE because of the extreme 
distortion of the target finite element mesh generated from the surface registration. 

5. CONCLUSION 
The results of the simulation and phantom experiments indicate that while TPS interpolation is the most accurate surface 
registration method of those evaluated, the Laplace method may be a viable surface registration technique if fiducials are 
not available.  Although the TPS method consistently outperformed the Laplace method, its performance is dependent on 
the number and distribution of fiducials available.  Both the Laplace and TPS methods have been used in MIE to register 
breast surfaces in order to determine boundary conditions for its elasticity model.  In addition to MIE, the Laplace and 
TPS methods also have potential to be used for non-rigid registration in more general applications. 
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